
Meta-Learning via Learned Loss

Yevgen Chebotar * 1 Artem Molchanov * 1 Sarah Bechtle * 2 Ludovic Righetti 2 3 Franziska Meier 4

Gaurav Sukhatme 1

Abstract
We present a meta-learning approach based on
learning an adaptive, high-dimensional loss func-
tion that can generalize across multiple tasks and
different model architectures. We develop a fully
differentiable pipeline for learning a loss func-
tion targeted at maximizing the performance of
an optimizee trained using this loss function. We
observe that the loss landscape produced by our
learned loss significantly improves upon the orig-
inal task-specific loss. We evaluate our method
on supervised and reinforcement learning tasks.
Furthermore, we show that our pipeline is able
to operate in sparse reward and self-supervised
reinforcement learning scenarios.

1. Introduction
Inspired by the remarkable capability of humans to quickly
learn and adapt to new tasks, the concept of learning to learn,
or meta-learning, recently became popular within the ma-
chine learning community (Andrychowicz et al., 2016; Duan
et al., 2016; Finn et al., 2017). When thinking about optimiz-
ing a policy for a reinforcement learning agent or learning a
classification task, it appears sensible to not approach each
individual task from scratch but to learn a learning mech-
anism that is common across a variety of tasks and can be
reused. The purpose of this work is to encode these learning
strategies into an adaptive high-dimensional loss function, or
a meta-loss, which generalizes across multiple tasks and can
be utilized to optimize models with different architectures.
Inspired by inverse reinforcement learning (Ng et al., 2000),
our work combines the learning to learn paradigm of meta-
learning with the generality of learning loss landscapes. We
construct a unified fully differentiable framework that can

*Equal contribution 1University of Southern California, Los
Angeles, CA, USA 2Max Planck Institute for Intelligent Systems,
Tübingen, Germany 3New York University, New York, NY USA
4Facebook AI Research, Menlo Park, CA, USA. Correspondence
to: Yevgen Chebotar <ychebota@usc.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Meta-Loss Network 

Optimizee

Optimizee
inputs 

Task info 
(target, goal, 
reward, …)

Optimizee
outputs

Meta-Loss

Forward
pass

Backward
pass

Figure 1. Using a learned meta-loss to update an optimizee model.

shape the loss function to provide a strong learning signal
for a range of various models, such as classifiers, regres-
sors or control policies. As the loss function is independent
of the model being optimized, it is agnostic to the particu-
lar model architecture. Furthermore, by training our loss
function to optimize different tasks, we can achieve gen-
eralization across multiple problems. The meta-learning
framework presented in this work involves an inner and an
outer loop. In the inner loop, a model or an optimizee is
trained with gradient descent using the loss coming from
our learned meta-loss function. Fig. 1 shows the pipeline
for updating the optimizee with the meta-loss. The outer
loop optimizes the meta-loss function by minimizing the
task-specific losses of updated optimizees. After training
the meta-loss function, the task-specific losses are no longer
required since the training of optimizees can be performed
entirely by using the meta-loss function alone. In this way,
our meta-loss can find more efficient ways to optimize the
original task loss. Furthermore, since we can choose which
information to provide to our meta-loss, we can train it to
work in scenarios with sparse information by only providing
inputs that we expect to have at test time. The contributions
of this work are as follows: we present a framework for
learning adaptive, high-dimensional loss functions through
back-propagation that shape the loss landscape such that it
can be efficiently optimized with gradient descent; we show
that our learned meta-loss functions are agnostic to the archi-



Meta-Learning via Learned Loss

tecture of optimizee models; and we present a reinforcement
learning framework that significantly improves the speed of
policy training and enables learning in self-supervised and
sparse reward settings.

2. Related Work
Meta-learning originates in the concept of learning to
learn (Schmidhuber, 1987; Bengio & Bengio, 1990; Thrun
& Pratt, 2012). Recently, there has a been a wide interest in
finding ways to improve learning speeds and generalization
to new tasks through meta-learning. The main directions
of the research in this area can be divided into learning rep-
resentations that can be easily adapted to new tasks (Finn
et al., 2017), learning unsupervised rules that can be trans-
ferred between tasks (Metz et al., 2019; Hsu et al., 2018),
learning optimizer policies that transform policy updates
with respect to known loss or reward functions (Andrychow-
icz et al., 2016; Li & Malik, 2016; Meier et al., 2018; Duan
et al., 2016), or learning loss/reward landscapes (Sung et al.,
2017; Houthooft et al., 2018). Our framework falls into the
category of learning loss landscapes; similar to (Andrychow-
icz et al., 2016), we aim at learning a separate optimization
procedure that can be applied to various optimizee mod-
els. However, in contrast to (Andrychowicz et al., 2016)
and (Duan et al., 2016), our framework does not require
a specific recurrent architecture of the optimizer and can
operate without an explicit external loss or reward function
during test time. Furthermore, as our learned loss functions
are independent of the models to be optimized, they can
be easily transferred to other optimizee models, in contrast
to (Finn et al., 2017), where the learned representation can
not be separated from the original model of the optimizee.
The idea of learning loss landscapes or reward functions in
the reinforcement learning (RL) setting can be traced back
to the field of inverse reinforcement learning (IRL) (Ng
et al., 2000; Abbeel & Ng, 2004). However, in contrast
to the original goal of IRL of inferring reward functions
from expert demonstrations, in our work we aim at extend-
ing this idea and learning loss functions that can improve
learning speeds and generalization for a wider range of appli-
cations. Furthermore, we design our framework to be fully
differentiable, facilitating the training of both the learned
meta-loss and optimizee models. A range of recent works
demonstrate advantages of meta-learning for improving ex-
ploration strategies in RL settings, especially in the presence
of sparse rewards. In (Mendonca et al., 2019), an agent is
trained to mimic expert demonstrations while only having
access to a sparse reward signal during test time. In (Haus-
man et al., 2018) and (Gupta et al., 2018), a structured latent
exploration space is learned from prior experience, which
enables fast exploration in novel tasks. (Zou et al., 2019) pro-
poses a method for automatically learning potential-based

reward shaping by learning the Q-function parameters dur-
ing the meta-training phase, such that at meta-test time the
Q-function can adapt quickly to new tasks. In our work, we
also demonstrate that we can significantly improve the RL
sample efficiency by training our meta-loss to optimize an
actor policy, even when providing only limited or no reward
information to the learned loss function at test time.

Closest to our method are the works on evolved policy gra-
dients (Houthooft et al., 2018), teacher networks (Wu et al.,
2018) and meta-critics (Sung et al., 2017). In contrast to us-
ing an evolutionary approach as in (Houthooft et al., 2018),
we design a differentiable framework and describe a way to
optimize the loss function with gradient descent in both su-
pervised and reinforcement learning settings. In (Wu et al.,
2018), instead of learning a differentiable loss function di-
rectly, a teacher network is trained to predict parameters of
a manually designed loss function, whereas each new loss
function class requires a new teacher network design and
training. Our method does not require manual design of
the loss function parameterization as our loss functions are
learned entirely from data. Finally, in (Sung et al., 2017)
a meta-critic is learned to provide a value function condi-
tioned on a task, used to train an actor policy. Although
training a meta-critic in the supervised setting reduces to
learning a loss function similar to our work, in the rein-
forcement learning setting we show that it is possible to
use learned loss functions to optimize policies directly with
gradient descent.

3. Meta-Learning via Learned Loss
In this work, we aim to learn an adaptive loss function,
which we call meta-loss, that is used to train an optimizee,
e.g. a classifier, a regressor or an agent policy. In the follow-
ing, we describe the general architecture of our framework,
which we call Meta-Learning via Learned Loss (ML3).

3.1. ML3 framework

Let fθ be an optimizee with parameters θ. Let Mφ be
the meta-loss model with parameters φ. Let x be the in-
puts of the optimizee, fθ(x) outputs of the optimizee and
g information about the task, such as a regression target, a
classification target, a reward function, etc. Let p(T ) be a
distribution of tasks and LTi(θ) be the task-specific loss of
the optimizee fθ for the task Ti ∼ p(T ).

Fig. 2 shows the diagram of our framework architecture
for a single step of the optimizee update. The optimizee
is connected to the meta-loss network, which allows the
gradients from the meta-loss to flow through the optimizee.
The meta-loss additionally takes the inputs of the optimizee
and the task information variable g. In our framework, we
represent the meta-loss function using a neural network,
which is subsequently referred to as a meta-loss network.



Meta-Learning via Learned Loss

-

*

Figure 2. Meta-Learning via Learned Loss (ML3) framework overview. The parameters of an optimizee are first updated using the
meta-loss. Afterwards, the parameters of the meta-loss network and the learning rate are updated using the task-specific loss calculated on
the updated optimizee. The dashed lines show the gradients for the meta-loss network parameters and the learning rate with respect to the
task-specific loss.

It is worth noting that it is possible to train the meta-loss
to perform self-supervised learning by not including g in
the meta-loss network inputs. A single update of the opti-
mizee is performed using gradient descent on the meta-loss
by back-propagating the output of the meta-loss network
through the optimizee keeping the parameters of the meta-
loss network fixed:

θj = θj−1 − α∇θj−1
E
[
Mφ(x, fθj−1

(x), g)
]
, (1)

where α is the learning rate, which can be either fixed or
learned jointly with the meta-loss network. The objective
of learning the meta-loss network is to minimize the task-
specific loss over a distribution of tasks Ti ∼ p(T ) and over
multiple steps of optimizee training with the meta-loss:

L(φ, α) =
N∑
i=0

M∑
j=1

LTi(θi,j) =
N∑
i=0

M∑
j=1

LTi(θi,j−1−

α∇θi,j−1
E[Mφ(xi, fθi,j−1

(xi), gi)]),

(2)

where N is the number of tasks and M is the number of
steps of updating the optimizee using the meta-loss. The
task-specific objective L(φ, α) depends on the updated op-
timizee parameters θj and hence on the parameters of the
meta-loss network φ, making it possible to connect the meta-
loss network to the task-specific loss and propagate the error
back through the meta-loss network. Another variant of
this objective would be to only optimize for the final per-
formance of the optimizee at the last step M of applying
the meta-loss: L(φ, α) =

∑N
i=0 LTi(θi,M ). However, this

requires relying on back-propagation through a chain of all
optimizee update steps. As we noticed in our experiments,
including the task loss from each step and avoiding propagat-
ing it through the chain of updates by stopping the gradients
at each optimizee update step works better in practice.

In order to facilitate the optimization of the meta-loss net-
work for long optimizee update horizons, we split the opti-

Algorithm 1 ML3 at training time (meta-train)
1: p(T )← Distribution of tasks
2: N ← Number of tasks per batch
3: M ← Number of optimizee updates
4: K ← Number of unrolls per iteration
5: while not done do
6: Sample a batch of tasks T0, . . . , TN ∈ p(T )
7: Randomly initialize optimizees fθ0 , . . . , fθN
8: for unroll k ∈ {0, . . . ,K} do
9: φ, α← minφ,α

∑N
i=0

∑M
j=1 LTi(θi,j−1 −

α∇θi,j−1
E[Mφ(xi, fθi,j−1

(xi), gi)])

Algorithm 2 ML3 at test time (meta-test)
1: T ∈ p(T )← Sample a new task
2: M ← Number of optimizee updates
3: Randomly initialize optimizee fθ
4: for j ∈ {0, . . . ,M} do
5: x, g ← Sample a batch of task samples
6: θ ← θ − α∇θE [Mφ(x, fθ(x), g)]

mization of L(φ, α) into several steps with smaller horizons,
which we denote unrolls similar to (Andrychowicz et al.,
2016). Algorithm 1 summarizes the training procedure of
the meta-loss network, which we later refer to as meta-train.
Algorithm 2 shows the optimizee training with the learned
meta-loss at test time, which we call meta-test

3.2. ML3 for Reinforcement Learning
In this section, we introduce several modifications that al-
low us to apply the ML3 framework to reinforcement learn-
ing problems. LetM = (S,A, P,R, p0, γ, T ) be a finite-
horizon Markov Decision Process (MDP), where S and A
are state and action spaces, P : S × A × S → R+ is a
state-transition probability function or system dynamics,



Meta-Learning via Learned Loss

Figure 3. Comparison of learned meta-loss (top) and mean-squared loss (bottom) landscapes for fitting the frequency of a sine function.
The red lines indicate the target values of the frequency.

R : S × A → R a reward function, p0 : S → R+ an
initial state distribution, γ a reward discount factor, and T
a horizon. Let τ = (s0, a0, . . . , sT , aT ) be a trajectory of
states and actions and R(τ) =

∑T
t=0 γ

tR(st, at) the tra-
jectory reward. The goal of reinforcement learning is to
find parameters θ of a policy πθ(a|s) that maximizes the
expected discounted reward over trajectories induced by the
policy: Eπθ [R(τ)] where s0 ∼ p0, st+1 ∼ P (st+1|st, at)
and at ∼ πθ(at|st). In what follows, we show how to train
a meta-loss network to perform effective policy updates in a
reinforcement learning scenario.

To apply our ML3 framework, we replace the optimizee fθ
from the previous section with a stochastic policy πθ(a|s).
We present two cases for applying ML3 to RL tasks. In
the first case, we assume availability of a differentiable sys-
tem dynamics model and a reward function. In the second
case, we assume a fully model-free scenario with a non-
differentiable reward function. In the case of an available
differentiable system dynamics model P and a reward func-
tion R, the ML3 objective derived in Eq. 2 can be applied
directly by setting the task loss to LT (θ) = −Eπθ [R(τ)]
and differentiating all the way through the reward func-
tion, dynamics model and the policy that was updated us-
ing the meta-loss Mφ. In many realistic scenarios, we
have to assume unknown system dynamics models and non-
differentiable reward functions. In this case, we can define
a surrogate objective, which is independent of the dynamics
model, as our task-specific loss (Williams, 1992; Sutton
et al., 2000; Schulman et al., 2015):

LT (θ) = −Eπθ

[
R(τ)

T∑
t=0

log πθ(at|st)

]

Although we are evaluating the task loss on full trajec-
tory rewards, we perform policy updates from Eq. 1 using
stochastic gradient descent (SGD) on the meta-loss with
mini-batches of experience (si, ai, ri) for i ∈ {0, . . . , B}
with batch size B, similar to (Houthooft et al., 2018). The

inputs of the meta-loss network are the sampled states, sam-
pled actions, rewards and policy probabilities of the sampled
actions: Mφ (s, a, πθ(a|s), r). We notice that in practice,
including the policy’s distribution parameters directly in the
meta-loss inputs, e.g. mean µ and standard deviation σ of a
Gaussian policy, works better than including the probability
estimate πθ(a|s), as it provides a direct way to update the
distribution parameters using back-propagation through the
meta-loss. As we mentioned before, it is possible to provide
different information about the task during meta-train and
meta-test times. In our work, we show that by providing
additional rewards in the task loss during meta-train time,
we can encourage the trained meta-loss to learn exploratory
behaviors. This additional information shapes the learned
loss function such that the environment does not need to
provide this information during meta-test time. It is also
possible to train the meta-loss in a fully self-supervised
fashion, where the task related input g is excluded from the
meta-network input.

4. Experiments
In this section we evaluate the applicability and the benefits
of the learned meta-loss under a variety of aspects. The ques-
tions we seek to answer are as follows. (1) Can we learn a
loss model that improves upon the original task-specific loss
functions, i.e. can we shape the loss landscape to achieve
better optimization performance during test time? With
an example of a simple regression task, we demonstrate
that our framework can generate convex loss landscapes
suitable for fast optimization. (2) Can we improve the learn-
ing speed when using our ML3 loss function as a learning
signal in complex, high-dimensional tasks? We concen-
trate on reinforcement learning tasks as one of the most
challenging benchmarks for learning performance. (3) Can
we learn a loss function that can leverage additional infor-
mation during meta-train time and can operate in sparse
reward or self-supervised settings during meta-test time? (4)



Meta-Learning via Learned Loss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Re
wa

rd

ML3

iLQR

(a) PointmassGoal environment

0 1 2 3 4 5 6 7 8 9
Iterations

60

50

40

30

20

10

0

Re
wa

rd

ML3

iLQR

(b) InvertedPendulum environment

Figure 4. Policy learned with ML3 loss compared to trajectories optimized with iLQR

Can we learn a loss function that generalizes over different
optimizee model architectures?

Throughout all of our experiments, the meta network is pa-
rameterized by a feed-forward neural network with two hid-
den layers of 40 neurons each with tanh activation function.
The learning rate for the optimizee network was learned
together with the loss.

4.1. Learned Loss Landscape

For visualization and illustration purposes, this set of exper-
iments shows that our meta-learner is able to learn convex
loss functions for tasks with inherently non-convex or diffi-
cult to optimize loss landscapes. Effectively, the meta-loss
allows eliminating local minima for gradient-based opti-
mization and creates well-conditioned loss landscapes. We
illustrate this on an example of sine frequency regression
where we fit a single parameter for the purpose of visualiza-
tion simplicity. Fig. 3 shows loss landscapes for fitting the
frequency parameter ω of the sine function f(x) = sin(ωx).
Below, we show the landscape of optimization with mean-
squared loss on the outputs of the sine function using 1000
samples from the target function. The target frequency ν is
indicated by a vertical red line, and the mean-squared loss
is computed as 1

N

∑N
i=0(sin(ωxi)− sin(νxi))2. As noted

in (Parascandolo et al., 2017), the landscape of this loss is
highly non-convex and difficult to optimize with conven-
tional gradient descent. In our work, we can circumvent
this problem by introducing additional information about
the ground truth value of the frequency at meta-train time,
however only using samples from the sine function at inputs
to the meta-loss network. That is, during the meta-train time,
our task-specific loss is the squared distance to the ground
truth frequency: (ω − ν)2. The inputs of the meta-loss net-
work are the target values of the sine function: sin(νxi),
similar to the information available in the mean-squared
loss. Effectively, during the meta-test time we can use the
same samples as in the mean-squared loss, however achieve
convex loss landscapes as depicted in Fig. 3 at the top.

4.2. Reinforcement Learning

For the remainder of the experimental section, we focus
on reinforcement learning tasks. Reinforcement learning
still remains one of the most challenging problems when
it comes to learning performance and learning speed. In
this section, we present our experiments on a variety of pol-
icy optimization problems. We use ML3 for model-based
and model-free reinforcement learning, thus demonstrat-
ing applicability of our approach in both settings. In the
former, as mentioned in Section 3.2, we assume access to
a differentiable reward function and dynamics model that
could be available either a priori or learned from samples
with differentiable function approximators, such as neural
networks. This scenario formulates the task loss as a func-
tion of differentiable trajectories enabling direct gradient
based optimization of the policy, similar to the trajectory
optimization methods such as the iterative Linear-Quadratic
Regulators (iLQR) (Tassa et al., 2014). In the model-free
setting, we treat the dynamics of the system as a black box.
In this case, the direct differentiation of the task loss is
not possible and we formulate the learning signal for the
meta-loss network as a surrogate policy gradient objective.
See Section 3.2 for the detailed description. The policy
πθ(a|s) is represented by a feed-forward neural network in
all experiments.

4.2.1. SAMPLE EFFICIENCY

We are now presenting our results for continuous control re-
inforcement learning tasks, by comparing task performance
of a policy trained with our meta-loss, to a policy opti-
mized with an appropriate comparison method. When a
model is available, we compare the performance with a gra-
dient based optimizer, in this case iLQR (Tassa et al., 2014).
iLQR has wide-spread application in robotics (Levine &
Koltun, 2013; Koenemann et al., 2015) and is therefore a
suitable comparison method for approaches that require the
knowledge of a model. In the model-free setting, we use
a popular policy gradient method - Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) for comparison.



Meta-Learning via Learned Loss

0 10 20 30 40 50 60 70
Iteration

10

9

8

7

6

5

4

3

Pe
rfo

rm
an

ce
 m

et
ric

ML3

PPO

(a) ReacherGoal environment

0 10 20 30 40 50 60 70
Iteration

100

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 m

et
ric

ML3

PPO

(b) AntGoal environment

Figure 5. Policy learned with ML3 loss compared to PPO performance

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position of the mountain car

1.0

0.5

0.0

0.5

1.0

Hi
gh

t o
f t

he
 h

ill

Hill landscape
ML3

iLQR

(a) MountainCar exploration behavior.

0 2 4 6 8 10 12
Optimization iterations

0.6

0.4

0.2

0.0

0.2

Re
wa

rd

ML3

iLQR

(b) Average distance to the goal at the last time-step.

Figure 6. Improved exploration behavior in the MountainCar environment when using ML3 with intermediate goals during meta-train
time, compared to iLQR.

We first evaluate our method on simple, classical continu-
ous control problems where the dynamics are known and
then continue with higher-dimensional problems where we
do not have full knowledge of the model. In Fig. 4a, we
compare a policy optimized with the learning signal com-
ing from the meta-loss network to trajectories optimized
with iLQR. The task is a free movement task of a point
mass in a 2D space with known dynamics parameters, we
call this environment PointmassGoal. The state space is
four-dimensional where (x, y, ẋ, ẏ) are the 2D positions
and velocities, and the actions are accelerations (ẍ, ÿ). The
task distribution p(T ) consists of different target positions
that the point mass should reach. The task-specific loss at
training time is defined by the distance from the target at the
last time step during the rollout. In Fig. 4a, we average the
learning performance over ten random goals. We observe
that the policies optimized with the learned meta-loss con-
verge faster and can get closer to the targets compared to the
trajectories optimized with iLQR. We would like to point
out that on top of the improvement in convergence rates, in
contrast to iLQR our trained meta-loss does not require a
differentiable dynamics model nor a differentiable reward
function as its input at meta-test time as it updates the policy
directly through gradient descent. In Fig. 4b, we provide
a similar comparison on the task that requires to swing up
and balance an inverted pendulum. In this task, the state
space is three dimensional: (sin(θ), cos(θ), θ̇), where θ is
the angle of the pendulum. The action is a one dimensional

torque. The task distribution consists of different initial
angle configurations the pendulum starts in. The plot shows
the averaged result over ten different initial configurations of
the pendulum. From the figure we can see that the policy op-
timized with ML3 is able to swing up and balance, whereas
the iLQR trajectory struggles to keep the pendulum upright
after swinging up the pendulum, and oscillates around the
vertical configuration. In the following, we continue with
the model-free evaluation. In Fig. 5, we show the perfor-
mance of our framework using two continuous control tasks
based on OpenAI Gym MuJoCo environments (Gym, 2019):
ReacherGoal and AntGoal. The ReacherGoal environment
is a 2-link 2D manipulator that has to reach a specified
goal location with its end-effector. The task distribution
consists of initial random link configurations and random
goal locations. The performance metric for this environ-
ment is the mean trajectory sum of negative distances to
the goal, averaged over 10 tasks. The AntGoal environment
requires a four-legged agent to run to a goal location. The
task distribution consists of random goals initialized on a
circle around the initial position. The performance metric
for this environment is the mean trajectory sum of differ-
ences between the initial and the current distances to the
goal, averaged over 10 tasks. Fig. 5a and Fig. 5b show the
results of the meta-test time performance for the Reacher-
Goal and the AntGoal environments respectively. We can
see that ML3 loss significantly improves optimization speed
in both scenarios compared to PPO. In our experiments,



Meta-Learning via Learned Loss

0 10 20 30 40 50 60 70
Iteration

12

11

10

9

8

7

6

5

4

3

Pe
rfo

rm
an

ce
 m

et
ric

2 layers
3 layers
4 layers
5 layers

(a) ReacherGoal environment

0 10 20 30 40 50 60 70
Iteration

100

0

100

200

300

400

500

600

Pe
rfo

rm
an

ce
 m

et
ric

2 layers
3 layers
4 layers
5 layers

(b) AntGoal environment

Figure 7. Optimization curves for policies with different number of layers that are optimized with the same meta-loss pre-trained on a
2-layer policy. Each curve is an average over ten different tasks.

we observed that on average ML3 requires 5 times fewer
samples to reach 80% of task performance in terms of our
metrics for the model-free tasks.
4.2.2. SPARSE REWARDS AND SELF-SUPERVISION

By providing additional reward information during meta-
train time, as pointed out in Section 3.2, it is possible to
shape the learned reward signal such that it improves the
optimization during policy training. By having access to
additional information during meta-training, the meta-loss
network can learn a loss function that provides exploratory
strategies to the agent or allows the agent to learn in a
self-supervised setting. In Fig. 6, we show results from
the MountainCar environment (Moore, 1990), a classical
control problem where an under-actuated car has to drive up
a steep hill. The propulsion force generated by the car does
not allow steady climbing of the hill. To solve the task, the
car has to accumulate energy by repeatedly climbing the hill
forth and back. In this environment, greedy minimization of
the distance to the goal often results in a failure to solve the
task. The state space is two-dimensional consisting of the
position and velocity of the car, the action space consists of
a one-dimensional torque. In our experiments, we provide
intermediate goal positions during meta-train time, which
a not available during the meta-test time. The meta-loss
network incorporates this behavior into its loss leading to
an improved exploration during the meta-test time as can be
seen in Fig. 6a. Fig. 6b shows the average distance between
the car and the goal at last rollout time step over several
iterations of policy updates with ML3 and iLQR. As we
observe, ML3 can successfully bring the car to the goal in
a small amount of updates, whereas iLQR is not able to
solve this task. The meta-loss network can also be trained
in a fully self-supervised fashion, by removing the task
related input g (i.e. rewards) from the meta-loss input. We
successfully apply this setting in our experiments with the
continuous control MuJoCo environments: the ReacherGoal
and the AntGoal (see Fig. 5). In both cases, during meta-
train time, the meta-loss network is still optimized using the
rewards provided by the environments. However, during
meta-test time, no external reward signal is provided and

the meta-loss calculates the loss signal for the policy based
solely on its environment state input.

4.2.3. GENERALIZATION ACROSS DIFFERENT MODEL
ARCHITECTURES

One key advantage of learning the loss function is its re-
usability across different policy architectures that is impos-
sible for the frameworks aiming to meta-train the policy
directly (Finn et al., 2017; Duan et al., 2016). To test the
capability of the meta-loss to generalize across different
architectures, we first meta-train our meta-loss on an archi-
tecture with two layers and meta-test the same meta-loss
on architectures with varied number of layers. Fig. 7a and
Fig. 7b show meta-test time comparison for the Reacher-
Goal and the AntGoal environments in a model-free setting
for four different model architectures. Each curve shows the
average and the standard deviation over ten different tasks
in each environment. Our comparison clearly indicates that
the meta-loss can be effectively re-used across multiple ar-
chitectures with a mild variation in performance compare to
the overall variance of the corresponding task optimization.

5. Conclusions
In this work we presented a framework to meta-learn a
loss function entirely from data. We showed how the meta-
learned loss can become well-conditioned and suitable for
an efficient optimization with gradient descent. We observed
significant speed improvements in benchmark reinforcement
learning tasks on a variety of environments. Furthermore,
we showed that by introducing additional guiding rewards
during training time we can train our meta-loss to develop
exploratory strategies that can significantly improve perfor-
mance during the meta-test time, even in sparse reward and
self-supervised settings. Finally, we presented experiments
that demonstrated that the learned meta-loss transfers well
to unseen model architectures and therefore can be applied
to new policy classes. We believe that the ML3 framework
is a powerful tool to incorporate prior experience and trans-
fer learning strategies to new tasks. In future work, we plan
to look at combining multiple learned meta-loss functions



Meta-Learning via Learned Loss

in order to generalize over different families of tasks. We
also plan to further develop the idea of introducing addi-
tional curiosity rewards during training time to improve the
exploration strategies learned by the meta-loss.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In ICML, 2004.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman,
M. W., Pfau, D., Schaul, T., and de Freitas, N. Learning to
learn by gradient descent by gradient descent. In NeurIPS,
pp. 3981–3989, 2016.

Bengio, Y. and Bengio, S. Learning a synaptic learning
rule. Technical Report 751, Département d’Informatique
et de Recherche Opérationelle, Université de Montréal,
Montreal, Canada, 1990.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learning via
slow reinforcement learning. CoRR, abs/1611.02779,
2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. In Advances in Neural Information Processing
Systems, pp. 5302–5311, 2018.

Gym, O., 2019.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an embedding space for
transferable robot skills. In International Conference on
Learning Representations, 2018.

Houthooft, R., Chen, Y., Isola, P., Stadie, B. C., Wolski,
F., Ho, J., and Abbeel, P. Evolved policy gradients. In
NeurIPS, pp. 5405–5414, 2018.

Hsu, K., Levine, S., and Finn, C. Unsupervised learning via
meta-learning. CoRR, abs/1810.02334, 2018.

Koenemann, J., Del Prete, A., Tassa, Y., Todorov, E., Stasse,
O., Bennewitz, M., and Mansard, N. Whole-body model-
predictive control applied to the hrp-2 humanoid. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3346–3351. IEEE, 2015.

Levine, S. and Koltun, V. Guided policy search. In In-
ternational Conference on Machine Learning, pp. 1–9,
2013.

Li, K. and Malik, J. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

Meier, F., Kappler, D., and Schaal, S. Online learning
of a memory for learning rates. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 2425–2432. IEEE, 2018.

Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S.,
and Finn, C. Guided meta-policy search. arXiv preprint
arXiv:1904.00956, 2019.

Metz, L., Maheswaranathan, N., Cheung, B., and Sohl-
Dickstein, J. Learning unsupervised learning rules. In
International Conference on Learning Representations,
2019.

Moore, A. Efficient memory-based learning for robot con-
trol. PhD thesis, University of Cambridge, 1990.

Ng, A. Y., Russell, S. J., et al. Algorithms for inverse
reinforcement learning. In Icml, pp. 663–670, 2000.

Parascandolo, G., Huttunen, H., Xiang, T., Hospedales, T.,
and Virtanen, T. Taming the waves: sine as activation
function in deep neural networks. Submitted to ICLR,
2017.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. Institut für Informatik, Technische Universität
München, 1987.

Schulman, J., Heess, N., Weber, T., and Abbeel, P. Gradi-
ent estimation using stochastic computation graphs. In
NeurIPS, pp. 3528–3536, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sung, F., Zhang, L., Xiang, T., Hospedales, T., and Yang, Y.
Learning to learn: Meta-critic networks for sample effi-
cient learning. arXiv preprint arXiv:1706.09529, 2017.

Sutton, R., McAllester, D., Singh, S., and Mansour, Y. Pol-
icy gradient methods for reinforcement learning with
function approximation. In NeurIPS, 2000.

Tassa, Y., Mansard, N., and Todorov, E. Control-limited
differential dynamic programming. IEEE International
Conference on Robotics and Automation, ICRA, 2014.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 2012.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.



Meta-Learning via Learned Loss

Wu, L., Tian, F., Xia, Y., Fan, Y., Qin, T., Lai, J.-H., and
Liu, T.-Y. Learning to teach with dynamic loss functions.
In NeurIPS, pp. 6467–6478, 2018.

Zou, H., Ren, T., Yan, D., Su, H., and Zhu, J. Reward shap-
ing via meta-learning. arXiv preprint arXiv:1901.09330,
2019.


