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Abstract— We propose a method for controlling multiple
active drifters in the presence of external forcing induced by
the ocean. Our active drifters have one actuator: they can
lower and raise their drogues in depth. By exploiting the
vertically stratified nature of ocean currents, we show how
classical multi-robot tasks (spreading out and aggregation)
can be accomplished by the multi-drifter system. Tests with
a realistic simulation based on an ocean model suggest that
a practical implementation of active drifters which aggregate
and disperse in the coastal ocean could be realized through
our control method with relatively inexpensive components.
Specifically, we are able to show that over a 90 day deployment
a significant fraction of drifters can be made to aggregate in
few clusters suitable for recovery.

I. INTRODUCTION

Lagrangian drifters are monitoring devices that are used
by oceanographers and biologists to track ocean currents and
measure water characteristics. In this work, we are concerned
with drifters that are composed of a surface float and a
tethered drogue that acts as an “underwater sail”1 (see Fig. 1).

Drifters are underactuated, and usually passive systems.
Positioning its drogue at a fixed depth causes a drifter to
travel passively with the current at that depth. This is a
common technique in oceanography to tag and track currents
(and all that they carry with them).

To achieve better spatial resolution, multiple drifters are
commonly deployed. There are two main challenges when it
comes to deploying multiple drifters in coastal regions. The
first is that they do not tend to provide uniform sampling
resolution close to the shore. The second is that they are
expensive (in terms of ship time) to retrieve at the end of
the mission (being widely dispersed).

Here we study active drifters [1], specifically those with a
single actuator that adjusts the drogue depth. Changing the
drogue depth permits the in situ measurement and estimation
of ocean current velocity at varying depths. This opens up
the possibility of gaining (limited) control of drifter motion
since a drifter with a depth-adjustable drogue can actively
select the best ocean current for propulsion that achieves
some high level mission goal (e.g., aggregation).

Ocean currents are the drifters’ main propulsive force.
However, this external forcing by ocean currents—along
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Fig. 1. Lagrangian drifters. Left: A prototype of our passive drifter system,
which was deployed in the Southern California Bight to measure ocean
currents. Right: The schematic shows the main components and the mode
of operation of an active drifter.

with the underactuation of the drifter system—renders the
control of active drifters difficult. The main challenge is
that the forces due to currents are both significant and
unknown. At best they are unpredictable or difficult to
predict. Active drifters are an example of robotic systems
under significant continuous external forcing. Other single
and multi-robot systems, including underwater vehicles [2]
and aerial robots [3], [4], are exposed to external forces
in real-world applications. In such settings, tasks such as
navigation, station keeping, or formation maintenance are
extremely challenging.

In this paper, we extend our work on single active drifters
from [1] and consider a multi-drifter system, with two
mission objectives. The first objective is coverage (drifters
are required to spread out) and the second is aggregation
(drifters are required to cluster near each other). Both are
well-studied in the multi-robot research community [5]. We
present a control method for active drifters that offers a
solution to these two classical multi-robot problems under
external forcing induced by the ocean currents. Spreading
out enhances the deployment process that drifters naturally
experience in the ocean. Aggregation offers the practical
benefit that a recovery vessel does not need to search for
and pick up each individual drifter at disparate locations at
the end of a monitoring mission. It can easily collect the
aggregated drifters by visiting few clusters of drifters, which
reduces ship operation cost. We report here on the control
design and a simulation-based feasibility study to inform the
design of a practical active multi-drifter system.

Our results suggest that a practical implementation of
drifters with our method could be made to aggregate and
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disperse in the coastal ocean with relatively inexpensive
components. We are able to show that after deployment
a significant fraction of drifters can be aggregated in few
clusters over a 90 day period (see IV-D), which greatly
facilitates the recovery of the deployed drifters.

Active drifter systems have been the subject of recent
study. Regarding the mode of operation, the system we study
here is closest to the system described in [6], which can raise
and lower a drogue via a winch. An alternative approach
uses a free-floating submerged drifter [7] wherein the entire
drifter body dives to a certain depth by changing its buoyancy
instead of sitting at the surface and controlling a drogue
on a tether. Argo floats [8] are larger Lagrangian profilers,
which are in wide use in the ocean today. They also adjust
their depth by buoyancy control and could theoretically be
operated as active drifter systems [9], though in practice they
are not operated as such today.

In terms of active drifter control, there are two main
approaches. The first is a predictive control approach which
explicitly relies on predictions of the ocean currents based on
an ocean model [6], [9]. The underlying assumption is that
the predictions by the ocean models are reliable, which is not
always the case [1]. We follow an alternative approach where
each drifter uses in situ measurements of ocean currents to
make control decisions.

A control strategy for rendezvous with multiple drifters
is presented in [10]. Although their targeted application of
aggregating multiple drifters is similar, they use a different
approach, where the ocean dynamics is represented by in-
ternal wave models with known parameters. In contrast, we
assume no explicit knowledge about the dynamics of the
ocean, except the vertical component of the flow, which we
assume to be zero. In [11] the target application is to control
the absolute position of a drifter in a coastal scenario, where
the drifter can anchor itself at the sea bottom if necessary. As
an extension, the deep ocean scenario for a single drifter is
examined under idealized conditions (the drifter is assumed
to have instant estimates of currents at the present location,
the ocean currents are assumed to be stationary and to span
the plane positively). The external forcing by current flow
fields and its impact on the control of underactuated robotic
systems is furthermore addressed by [12] for a coverage
task with self-propelled vehicles of bounded velocity in a
river environment and by [13] for tasks of tracking coherent
structures on flows with autonomous underwater vehicles in
the ocean.

We state the drifter control problem formally in Section II.
Section III introduces the high-level as well as the low-level
control methods. The system parameters are defined, and the
feasibility of the multi-robot active drifter system is tested
by simulations in Section IV. Section V concludes the paper
and outlines a plan for future work.

II. PROBLEM FORMULATION

Our representation of the ocean relies on ocean current
velocity vectors which are changing over time. This defines

the time-varying flow field f : R3×R≥0 → R3, with vectors

f(x, t) = (fx(x, t), fy(x, t), fz(x, t))
T
. (1)

fx(x, t) and fy(x, t) are the horizontal components of the
velocity vectors in east and north direction. t denotes the
time in the model and x = (x, y, z)

T is the 3D position. In
what follows, we will neglect the vertical flow component
and assume fz(x, t) = 0 everywhere.

In order to simulate realistic dynamics of the ocean, we
obtain the flow field from the Regional Ocean Modeling Sys-
tem (ROMS) [14]2. ROMS serves as our “ocean simulator”:
it generates velocity vectors for discrete time, with temporal
resolution of 1 hour over a grid with spatial resolution of
3 km × 3 km. We interpolate the velocity vectors over the
ROMS grid to retrieve continuity.

Given a group of N active drifters, each drifter’s state
is described by the 2D position of its surface float, pi =
(xi, yi)

T ∈ R2, and the position of its tethered drogue at
depth zi, i ∈ {1, . . . , N}. In this treatment we assume
that the drogue has the same horizontal position as the
surface float. In practice this will not be the case, but the
horizontal offset between the two will not be significant
relative to the size of the coverage area. We further assume
absolute localization and global communication capabilities
of the drifters within a centralized network (e.g., using GPS
and satellite communication via a receiver on the surface
float), such that the drifters can measure their positions with
sufficient accuracy and are able to exchange data among each
other via a central base station if needed.

We model the drifters as first-order systems with La-
grangian dynamics,

ṗi =
(
fx(xi(t), t), fy(xi(t), t)

)T
and żi = ui(t) , (2)

with xi(t) = (pi(t)
T
, zi(t))

T
and control input

ui(t) =


v , z∗i > zi(t)

0 , z∗i = zi(t)

−v , z∗i < zi(t) ,

(3)

where z∗i denotes the desired depth, and v represents the
constant vertical speed for actuating the drogue.

Given the above ocean and drifter models, our goal is
to control the drogues of N drifters in such a way that
the drifters manage to 1) spread out inside a preference
area A, and 2) aggregate within the overall mission area
Ω, where A ⊂ Ω ⊂ R2, despite the external forcing of the
ocean currents. In other words, with respect to spreading
out, the drifters should finally cover A in the limit by
incrementally maximizing the minimum distance between
drifters contained in A,

max
u(t)

(
min

pi,pj∈A, i, j∈{1, ..., N}, i 6=j
‖di, j‖2

)
, (4)

where u(t) = (u1(t), . . . , ui(t), . . . , uN (t)) and di, j =
pj − pi. Similarly, with respect to aggregation, the drifters

2See also http://ourocean.jpl.nasa.gov/.
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are required to converge to clusters within Ω, i.e., the
distances between the drifters ‖di, j‖2 are minimized over
time. This (reverse) process results in the maximization of an
aggregation metric. We delay the introduction of this metric
till Section IV where the quantitative evaluation of the active
drifter system is discussed.

III. DRIFTER CONTROL METHODS

We design a control law that utilizes in situ measurements
of ocean currents collected by the drifter. Our control method
consists of two layers: a high-level controller that generates
the desired instantaneous motion direction for each drifter
and a low-level controller (a tracking controller) that selects
a depth at which the ocean current best causes the drifter to
move along the desired direction.

A. High-Level Control Law

The high-level controller is a potential field controller,
which generates a unit direction vector F̃i for a drifter i,

F̃i =
Fi

‖Fi‖2
, with Fi =

n∑
j=1, j 6=i

Fdi,j
+ Ci , (5)

and

Fdi,j
=

ξ
(

rd
‖di,j‖2

)2
d̃i,j , ‖di,j‖2 > dmin

0 , ‖di,j‖2 ≤ dmin

(6)

Ci =

(
‖di,c‖2
rc

)wc

d̃i,c , (7)

where Fdi,j is the interaction force which attracts (or repels)
drifter i toward (or from) drifter j, d̃i,j and d̃i,c are unit
direction vectors, dmin is the user-defined minimum distance
of interaction between two drifters, and rd is the radius at
which the 2-norm of the interaction force of the drifters
equals 1. ξ = 1 holds when a drifter is in the “aggregation”
mode (attraction), and ξ = −1 when a drifter is in the
“spreading” mode (repulsion). Ci is the force of attraction
toward the center of the preference area A defined by the
central point pc and the radius rc. Ci should not disturb
the interaction of drifters inside the preference area, but,
at the same time, it should dominate outside the area. We
achieve this by setting wc to a high value. As the high-level
controller generates only the direction for the motion, we are
not interested in the magnitude of the force and normalize
the vector Fi to obtain the unit direction vector F̃i.

B. Low-Level Control Law

The purpose of the low-level controller is to select the
best depth at which the propulsion due to the ocean currents
will cause the drifter to move in the direction designated
by the high-level control law. In this work, we consider a
discrete set of depths. The choice of these depths is non-
trivial and is explained in Section IV-B; it involves sampling,
i.e., making measurements of currents at various depths, and
decision making, i.e., choosing a particular depth.

With the drogue positioned at a particular depth for a small
duration, the GPS on the surface is able to measure a change
in drifter position and hence estimate motion locally. We
ascribe this motion entirely due to the propulsive force at
that depth, thereby estimating the ocean current at the present
drogue depth. The low-level controller projects the ocean
current vector onto the desired direction F̃i (generated by
the high-level controller) to obtain the sample quality Q of
the ocean current that has effectively been sampled at the
present depth. The sample quality thus measures the fitness
of the ocean current at a particular depth.

The condition that triggers a control decision event is
defined as

|α− αprev| > αtol , (8)

where α is the angle between the latest estimate of the current
the drifter is traveling with and the direction vector F̃i, αprev
corresponds to α for the drogue depth at which the previous
control decision was made, and αtol is the tolerance angle
(a threshold value). Thus, the low-level controller makes a
new decision every time the situation changes “significantly
enough”, which is defined by the tolerance angle.

The basic low-level controller employs a simple strategy.
It periodically estimates the direction of the current it is
traveling with. If a control decision event is triggered, the
drogue starts sampling by cycling through a discrete range
of depths. At each depth, the ocean current is estimated.
Once all estimates are made, the controller picks the depth
with the highest value of Q, and saves the present value of
α (at the depth chosen by the controller) as αprev.

This basic controller has two limitations. First, it does not
reuse ocean current estimates. All the estimates from the
previous control event are treated as outdated every time a
new decision is required, even though, according to (8), in
some cases a control decision event may be triggered due
to frequent changes in the desired direction. For example,
such behavior is typically observed when the drifters are
aggregated in a cluster. Second, it does not leverage the
aggregation of drifters. Accordingly, we extend the basic
controller as follows to improve on performance.

In order to reuse previous ocean current estimates, we
introduce the trust time Ttrust and associate time stamps with
ocean current estimates. Ttrust defines how long an estimate
can be used before it is outdated. The sampling strategy is
modified as follows. Every time a drifter needs to make a
new control decision, it re-samples only at the depths where
its ocean current estimates are outdated. A decision is made
once the estimates at all depths in the set are up to date.

The second extension uses samples acquired by other
drifters in the cluster and induces collaboration among
closely located drifters. Every time a new control decision is
required, a drifter creates a pool of ocean current estimates,
which consists of estimates acquired by itself and those
acquired from neighboring drifters that are within the data
exchange distance. We choose the data exchange distance
for our system to be the same as the minimum distance
of interaction dmin. For every depth value, the estimates



are sorted according to their time stamp (the most recently
acquired estimates are put first). The drifter puts the latest
estimate for every depth value into the best set. Next, the
drifter moves the drogue to only the depths for which the
estimates are outdated in the best set. The best set is updated
every time a new estimate is made. Once all estimates in the
best set are up to date, the new control decision is made. This
process is asynchronous and stochastic. It is asynchronous in
the sense that current estimates can be shared as available—
there are no preset communication slots. The clocks on
the drifters do need to be synchronized however. This is
a reasonable requirement considering the drifters are GPS
equipped. The process is stochastic in the sense that there
is no centralized current estimation task assignment, and,
since all drifters act asynchronously, ocean current estimation
happens randomly.

For the practical application, the high-level controller can
be implemented as a centralized controller at the base station
and a copy of the low-level controller resides on each drifter.
Each drifter communicates its coordinates to the base station,
and receives a desired direction vector back from the base
station. Additionally, since drifters collaborate only when
they are in close proximity to each other, we believe that
the exchange of ocean current estimates can be done via RF
modems in a practical system.

IV. PERFORMANCE EVALUATION

A. Aggregation Metric

In order to numerically evaluate the performance of the
control algorithms, we propose a metric similar to a normal-
ized pairwise potential energy of points,

Ma(D,n,N) =
(
∑n

i=1

∑n
j=1 U(‖di,j‖2))− n
N2 −N

, (9)

where N is the initial number of drifters and n denotes the
number of remaining drifters still left in the mission area Ω
at a given time. D ∈ Rn2

is a square matrix of horizontal
distances between the n remaining drifters, and ‖di,j‖2
are elements of this matrix. Thus, since the normalization
factor depends on N but the sum of the potential energies
of individual pairs depends on n, the aggregation metric
penalizes the fact that drifters leave the mission area (such
drifters are considered to be lost). The function U is given
as

U(d) = fs(d, au) , (10)

where the tuple au is a special instance of the parameter tuple
a = (a00, a11, a12, a13, a21, a22, a23) of the logistic function
fs for the potential field. The logistic function fs is defined
as

fs(x, a) =
1

a00
(

a11
1 + ea12(x−a13)

+
a21

1 + ea22(x−a23)
) . (11)

The parameters au are chosen such that the function has
the highest drop approximately between 20 000 and 50 000,
which corresponds to distance in meters. This zone is a
transition area, once drifters get into this zone the metric
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Fig. 2. The artificial potential energy function U(d) for tuple au. The
function defines the quality of aggregation of a pair of drifters.

starts growing faster, reflecting the fact that the drifters
are approaching aggregation. Fig. 2 shows the graph of
U(d) for our choice of au with parameter values a00 =
1.77203, a11 = 1, a12 = 0.0002, a13 = 35 000, a21 =
1, a22 = 0.000035, a23 = 35 000.
Ma is normalized, thus it assumes 1 when all drifters

are aggregated at one point (independent of the number of
drifters). In order to determine the approximate number of
clusters of drifters, nclust, we use the heuristic rule

nclust ≈ 1/Ma , (12)

which agrees with our observations in simulations.

B. ROMS Parameters

In our simulations, we use a discrete ROMS model with
interpolation to the nearest grid point in order to generate
a realistic ocean flow field. Since there is a cost associated
with estimating currents at each depth, in practice we want
the controller to work with as few depths as possible. An
active drifter is controllable if the currents in the area span
the plane positively [11]. This criterion can be reformulated
as follows

max
i, j

(θi, j(pl)) < π , (13)

where θi, j(pl) is the angle (in the horizontal plane) between
adjacent current vectors at depths i, j at the point pl. This
means that if we project current vectors with the same
horizontal initial point pl onto the horizontal plane, and the
largest angle between these vectors is less than π, the system
is controllable. This rule also implies that the minimum
number of depths necessary is 3 (i.e., two vectors cannot span
the plane positively). Thus, in order to find the appropriate
depths we introduce the integral fitness function

R =

T∑
k=1

P∑
l=1

fa(θmax1(f ′k, l), θmax2(f ′k, l)) , (14)

where R depends on the ROMS dataset represented by
P spatial points (in our case it is a mission area)
and T time points (in our case it is a number of
hours) in a given time period of the dataset. f ′k, l =(
f((pT

l , z1)T , tk), f((pT
l , z2)T , tk), f((pT

l , z3)T , tk)
)

is a
set of three ocean current vectors at a given time tk and
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Fig. 3. ROMS point-wise fitness function fa(θmax1, θmax2). The function
defines how well the plane is spanned at a point by a triple of vectors, based
on the angles between each pair of vectors.

given horizontal point pl, but at different depths z1, z2, z3.
θmax1 is the largest angle of a triple of angles formed by the
current vectors at different depths at the same pl, θmax2 is the
second largest angle. The point-wise fitness fa(θmax1, θmax2)
is now given by

fa(θmax1, θmax2) =

fs(
θmax1

π
, aa) + (

π − θmax2

π
)fs(

θmax2

π
, aa)−∆fs , (15)

where ∆fs is bias compensation, such that the point-wise
fitness is 0 when all three vectors are collinear, aa is a special
instance of the parameter tuple a of the logistic function
fs presented earlier in (11). Fig. 3 depicts the point-wise
fitness function fa(θmax1, θmax2) in the space of its arguments.
As one can see, the function has its maximum value when
θmax1 = θmax2 = 120◦, and has the highest derivative in the
area where θmax1 ≈ 180◦ with minor influence of θmax2. fa is
also used to plot fitness maps, which are color maps (with a
color corresponding to the value of the function at the point)
acquired by summation of point-wise fitness values over time
at each point. Such fitness maps allow visualization of the
points where currents span the plane positively. These fitness
maps are similar to the controllability heat maps introduced
in [9]. The fitness function presented above allows us to
compare and pick the most appropriate combination of three
depths. For this, we calculate the fitness value for every
possible combination of depths and pick the combination
that scores the highest fitness value over the whole map. As
an exemplar we calculate the best combination of depths
for January 2014—the first month of data that is used
in the simulations reported here. We also calculated the
best combination for February and March of 2014. They
yielded the same combination of depths. Based on this, for
purposes of the present study, all further investigation was
conducted for the January 2014 dataset. The best depths are
{0, 75, 400}m. To evaluate the results we build the fitness
map for these three depths and compare it to the best map
H12. We build H12 as follows: for a given hour k, we take
the time slice of the full (12 depth) ROMS flow field (i.e.,

a multidimensional array representing this flow field at the
given hour) and for each surface position pl of this slice,
we compare all combinations of depth triples by their point-
wise fitness value. For each position, we select the best depth
triple and save its scalar fitness value in the matrix Hk

12. The
target best map is obtained as the matrix

H12 =

T∑
k=1

Hk
12 , (16)

where T depends on the time span used for calculations
(as mentioned, we used one month of data). The results
are shown in Fig. 4 on the left and in the center. As
one can see, three depths are not enough to approximate
H12. We add additional depths greedily, by adding the
depth that gives the highest gain of fitness at each step,
and terminate the procedure once the map is represented
“reasonably well”. The resulting map built on a six depth
set {0, 10, 30, 75, 200, 400}m is shown in Fig. 4 on the right.
The overall fitness of this map is ≈ 85% of the fitness of the
12 depth map. We treat this as a reasonable approximation;
these are the six discrete depths used in the simulations
reported here3.

C. Upper Bound of Performance

We find the upper bound by evaluating the performance of
the high-level algorithm for an ideal drifter. An ideal drifter
is capable of

• instantaneously changing the drogue depth;
• instantaneously estimating ocean currents, i.e., the

drifter spends no time with the drogue at a particular
depth to estimate currents at that depth;

• making ideal measurements of ocean currents with no
estimation noise;

• perfect communication.

Thus, at the moment of taking a control decision, the ideal
drifter knows all currents at its present location instanta-
neously. This scenario gives us an upper bound of what
can be achieved by our algorithm in the best case. All
further evaluations are performed with the simulation setup
parameters given in Tab. I, for 100 simulation runs.

TABLE I
SIMULATION PARAMETERS

ROMS dates starting with January, 01, 2014
Simulation time span 90 / 180 days

Depths set { 0, 10, 30, 75, 200, 400 } m
Number of drifters 30

Number of runs 100
rd 30 000 m
dmin 1 000 m
pc longitude = -124.75, latitude = 35.75
rc 250 000 m
wc 10

Simulation time step 300 s

3Note that adjusting the set of depths online during a mission presents
an interesting extension of the controller and is subject to future work.



Fig. 4. Plots of ROMS fitness maps. Left: A map created from the full 12 layer set. Center: A map created from the best 3 layer set. Right: A map
created from the 6 layer set used in our simulations.

TABLE II
SYSTEM PERFORMANCE OVER 100 SIMULATIONS

Average metric
Average number of

drifters lost
90 days 180 days 90 days 180 days

Ideal drifter 0.49 0.55 7 8.5
Realistic drifter 0.21 0.29 9 12.8

As mentioned earlier, the aggregation area in the mission
space Ω is defined by the central attraction point pc and the
radius rc of the aggregation high-level controller introduced
in (5). Each of the 100 simulation runs performs a full
aggregation scenario with random initial positions of drifters
inside the preference area A. The results of the simulation for
90 and 180 days are presented in Tab. II for the ideal drifters.
Fig. 5 presents the average evolution of the aggregation
metric (9) over time. As one can see, the ideal drifter scenario
is almost saturated after 90 days of simulation and it has
≈ 90% of its final value at this point. Thus, we decide to
limit simulation time to 90 days for all further evaluations.
This time cutoff has some advantages. First, late aggregation
is penalized, which is important since in practice drifters may
have limited life time. Second, we partially account for cases
where saturation may happen earlier and the system starts
deteriorating by losing drifters (i.e., they leave Ω), which
happens inevitably when the time span is increased.

From the simulations and applying heuristic (12), one
can see that for the ideal drifter case we obtain ≈ 2
clusters after the process is finished, which is a very good
result, considering the nature of external forcing and the fact
that the algorithm utilizes no predictions but only in situ
measurements. The choice of parameters for the realistic
drifter scenario is explained next.

D. Performance under Estimation Limitations

In the previous section, we presented simulations that were
performed under the assumption that the drifter can estimate
currents instantaneously. This is never the case in reality. A
drifter must sample currents at various depths before it makes
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Fig. 5. Evolution of the average aggregation metric over time based on
100 simulation runs. The green curve represents the performance of ideal
drifters. The black curve represents the performance of realistic drifters with
a low-level controller.

an appropriate decision according to the low-level controller
(see III-B).

For our system, we assume that, in order to acquire a cur-
rent estimate, the drogue has to submerge to a corresponding
depth and drift for a certain time Test with the ocean current.
As an initial guess, we assume the estimation time to be
Test = 10 minutes per depth.

The vertical velocity of a realistic drogue is bounded. Our
model uses the constant speed v for climbing and diving. The
choice is based on parameters of existing buoyancy-driven
vehicles [7], [16]–[18] that report achievable maximum ver-
tical velocities in the range of 0.1 to 0.5 m/s. For our system,
we chose a reasonable value in the middle of this range, and
set it to 0.3 m/s.

As can be inferred from [15], given a slowly moving
object, such as the drifter, with estimation time on the order
of minutes and almost constant speed, modern estimation
approaches can reduce the velocity measurement error to
the order of millimeters per second. Hence, given that the
average velocity of the drifter is around 0.1 to 0.2 m/s, such
estimation errors due to noise can be neglected even for
realistic drifters at first.
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point.

Another parameter of the basic low-level control algorithm
is the tolerance angle αtol. Fig. 6 presents the graph of
performance of the system under different tolerance angles.
From this graph we can infer that our system has the best
average performance at αtol = 20◦±5◦, thus, for the selection
of the remaining parameters and further simulations we fix
the value to 20◦.

The next set of parameters belongs to the extended version
of the low-level control algorithm (see III-B). The first is the
trust time Ttrust. Fig. 7 depicts the graph of the performance of
the system for varying Ttrust. As one can see, the performance
deterioration starts approximately after the 3.5 hour mark.
Thus, for further experiments we pick Ttrust = 3.5 hours.

The final addition to the low-level control algorithm is the
ability to share information about ocean current estimates.
We implemented it as a sample pool—a set of current
estimates that every drifter collects from drifters that are
within a distance dmin when the control decision is taken.
Such collaboration helps drifters to save time by splitting the
task of current estimation between nearby drifters stochas-
tically, and, hence, taking advantage of clustering (see III-
B). The performance of the system in this setting is shown
in Tab. II for the realistic drifter scenario. The average
performance of 0.21 and 0.29 (for 90 and 180 days of
simulation) corresponds to ≈ 3–5 clusters (with around 6–10
drifters per cluster). Although it is lower than the average
score for the ideal drifter scenario, we are encouraged by
the performance and the implication for the practical use.
Considering high ship operation costs, such clustering can
significantly facilitate the process of collection of drifters.

Finally, we demonstrate an example of a complete deploy-
ment scenario, where drifters are dropped at one position
(marked with a green cross), then spread all over the area
during 90 days (Fig. 9 left) and finally aggregate over the
last 90 days (Fig. 9 right). Although we have quite a good
aggregation (more than a half of drifters assembled), the
seemingly low score in this scenario (≈ 0.31) reflects the fact
that the rest of the drifters are either lost or completely spread
through the area due to external forcing (in the particular case
of Fig. 9: 10 lost, 3 outliers).
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Fig. 7. Performance of the realistic drifter system with the extended low-
level controller under different Ttrust. Every point is based on 100 simulation
runs. The black curve represents the mean value and the green curves
represent the standard deviation of the aggregation metric at every point.
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Fig. 8. Performance of the realistic drifter system with the extended
controller under different estimation noise levels. The level of the noise
is defined through the upper limit of a triangular distribution. The system
does not exhibit significant drop in performance up to the noise level of
5 cm/s. After this mark the performance degrades gracefully. Every point is
based on 100 simulation runs. The black curve represents the mean value
and the green curves represent the standard deviation of the aggregation
metric at every point.

E. Performance under Noisy Estimation

In this section, we finally evaluate the system’s perfor-
mance under estimation noise. We assume estimations of
velocities are acquired from GPS data solely. As mentioned
above in IV-D, modern estimation approaches allow to obtain
estimation errors on the order of millimeters per second. We
now calculate the errors for a worst case scenario. For that,
let us consider the simple velocity estimator

f̂ =
pk − pk−1

Test
. (17)

For the GPS error, we assume simple additive noise with
a uniform distribution symmetric around 0 with a lower
limit −emax and upper limit emax, and independence of
noise components. For (17), we get a triangular distribution
of the noise (as the distribution of the sum of uniformly
distributed random variables) with half the distribution width
etr = 2emax

Test
. For the value of emax, we take the error of a

popular inexpensive GPS satellite messenger Spot Tracker4

4For more details, see https://www.findmespot.com/
downloads/SPOT2-SellSheet.pdf

https://www.findmespot.com/downloads/SPOT2-SellSheet.pdf
https://www.findmespot.com/downloads/SPOT2-SellSheet.pdf


Fig. 9. Left: An example of positions of 30 drifters after 90 days of spreading. Right: An example of positions of 30 drifters after 90 days of aggregation
following the spreading phase (180 days of simulation total). Blue triangles denote drifters and drifter clusters. Numbers near triangles denote cluster sizes.
Triangles without numbers denote single drifters. Crossed out triangles on the borders (i.e., borders of Ω) denote lost drifters. The green cross marks the
initial position of drifters and the green circle denotes the preference area A. The black thin curve denotes the coastal line.

emax = 6.4 m. Thus, for the triangular distribution we have
etr ≈ 0.021 m/s.

Fig. 8 depicts the curve of the average aggregation metric
for different etr. As one can see, the system is robust to the
estimation noise. In the worst case scenario with etr and even
beyond (with noise up to 5 cm/s) there is no significant drop
in performance. More than that, the system exhibits critical
problems (i.e., performance lower than 0.1) only at the upper
limit of the noise distribution of 20 cm/s, which corresponds
to the average velocity of the ocean currents.

V. FUTURE WORK

In our future work, we plan to address other key aspects
of an effective practical active drifter system, namely the
limitations in communication and the power efficiency. Fur-
ther interesting research directions include the study of other
multi-robot tasks under the influence of external forcing, such
as loitering and formation maintenance.
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