


o Architectures

o Inception V1. TF from scratch
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= Discussion
o Quantization
= Overview of the toolkit
= 8-bit quantization results
o Smaller SqueezeNets
= Architectures
= Training results
o Distillation: SNet to SNetX8
o Next steps

G ERL



Inception V1: TF training from scratch

Original Ground Truth Previous results New results (TF) New results (TF)
(caffe) Best snapshot Last snapshot

best_pred : cur_pred :
iter = 4540 iter = 4540
loss = 0.13659 loss = 0.13659




Main ideas:
o Replace 3x3 filters with 1x1 filters
o Decrease number of input channels (squeeze)
o Postpone downsampling (convolve with stride 1)
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SgeezeNet: Training

Original

Ground Truth

Inception V1

SqueezeNet
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Test accuracy
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94.7 (x0.994)
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Inference time

48.1

18.5 (x0.385)

gnet snet

Snapshot size

54.3

9.8 (x0.180)

gnet snhet
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What conv2d() do:
o Flattens the filter to a 2-D matrix with shape
[filter _height * filter_width * in_channels, output channels].

o Extracts image patches from the input tensor to form a virtual tensor of shape
[batch * out _height * out _width, filter _height * filter _width * in_channels].

o For each patch, right-multiplies the filter matrix and the image patch vector.
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Sparse vs. Sparse-Dense vs Dense (conv2d() ):
differ by the TYPE OF MULTIPLICATION
o Sparse: SPARSE x DENSE

tf.sparse_tensor_dense_matmul(filter, patches mx, adjoint_b=True)
Where filter is a sparse matrix

o Sparse-Dense: DENSE x DENSE with SPARSE OPTIMIZATION:
tf.matmul(patches _mvx, filter, b_is_sparse=True)
Where filter is a dense matrix

Performance of sparse and sparse-dense convolutions
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Input (float ] QuantizedMatMul QuantizedMatMul
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! Dequantize Dequantize
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o Weights quantized uniformly between Min/Max values

o Min/Max values (range) are defined in an “optimal” way,
rather than plain min/max floats to retain proper resolution

Source link:
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/comment-page-1/#comment-99004
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Quantization: Tool and Results

Modes:

Weights - round, compress (dequantize at runtime)
Quantize - quantize weights and the operations (described in the
tutorial)
Weights_rounded - round weights to buckets, but don’t compress
There are a few bugs: only 8 bit weight quantization worked
Requires preparation special *.pb files with frozen weights from *.meta

files and checkpoints
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Architectures:
o Width reduction (reduce # of parameters in every layer):
snetXN - # of parameters reduced ~N times
= snetX2, snetX4, snetX8
» Height reduction (reduce # of parameters by stripping layers):
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Smaller SqueezeNets: Training

| Orlglnal Labels GNet SNet SNetX2 SNetX4 SNetX8
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95.3% 94.7% 94.9% 94.6% 92%




Legend:
o s/h = weights of losses from soft/hard labels in the final weighted loss, i.e.
Loss = s * Loss_softlabel + h * Loss _hardlabels

Accuracies for different temperatures and
soft/hard loss coefficients

0.96 - T
- - base Il s/h=050/0.50
B s/h =0.00/1.00 1 s/h =0.90/0.10
095 W s/h =0.25/0.75 [ s/h=1.00/0.00F
0.94 +
> o—
8
5 0.93
U —
&

0.92

0.91

0.90 — — —
1.0 2.0 4.0 8.0

ConCI US ion . Temperatures
Distillation may help, but there is no clear rule to pick up parameters
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Distillation: snet to shetX8

Orlglnal Labels GNet SNet SNetX8 distil SNetX8

95.3% 94.7% 92% 93.4%




* Quantization:
o Does full 8-bit quantization give speed boost ?

o Distillation:
o Incorporate intermediate feature maps into distillation

o Sparse multiplication:
o Can we do better ?

o Architectural changes to SqueezeNet:
o More graduate upsampling (4 stages instead of 2) +
o (Get features from earlier feature maps

» Removing\Resetting correlated filters
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QUESTIONS ?77?
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e Features and labels:
o [feat/.. - group containing different features
o /label/.. - group containing different labels
e Cross-validation indices (for consistent comparison)
o /crossval_indx/[index]/train
o /crossval_indx/[index]/val
o /crossval_indx/[index]/test
e Names for cross-validations
(in case they have semantic meaning, like testing on different unseen objects)
o /crossval names
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