

o Architectures

o Inception V1. TF from scratch

(baseline to compare to SqueezeNet)
o SqueezeNet:
= Design choices
= Architecture
= Training vs Inception V1

o Compression

o Pruning. Can it help ?

= Convolutions in a nutshell
m Sparse convolutions vs Sparse-dense vs conv2d. Results
= Discussion
o Quantization
= Overview of the toolkit
= 8-bit quantization results
o Smaller SqueezeNets
= Architectures
= Training results
o Distillation: SNet to SNetX8
o Next steps

G ERL

Inception V1: TF training from scratch

Original Ground Truth Previous results New results (TF) New results (TF)
(caffe) Best snapshot Last snapshot

best_pred : cur_pred :
iter = 4540 iter = 4540
loss = 0.13659 loss = 0.13659

Main ideas:
o Replace 3x3 filters with 1x1 filters
o Decrease number of input channels (squeeze)
o Postpone downsampling (convolve with stride 1)

eel®

Xo\Y
Cnvolution filters

ReLUI

e)kpa“d 1x1 and 3x3 convolution filters

550
299
O 0 O

560
000
500

ReLU *

G ERL

200X320 100X160

conv1i
400X640 (stride2)

64

50X80

<D

25X40

128

192 192 256 - 256 :

100X160 400X640

4

G ERL

SgeezeNet: Training

Original

Ground Truth

Inception V1

SqueezeNet

100

Test accuracy

95.3 1
94.7 (x0.994)

gnet snet

Inference time

48.1

18.5 (x0.385)

gnet snet

Snapshot size

54.3

9.8 (x0.180)

gnet snhet

¢S ERL

What conv2d() do:
o Flattens the filter to a 2-D matrix with shape
[filter _height * filter_width * in_channels, output channels].

o Extracts image patches from the input tensor to form a virtual tensor of shape
[batch * out _height * out _width, filter _height * filter _width * in_channels].

o For each patch, right-multiplies the filter matrix and the image patch vector.

TEQS;LMEEQSNSJ CILTER 3 , FEATERE MM LAMPLING/ FLATENMNG [@M&Tﬂlx M ULTIPLICATIONV
' FILER L : :
u / | i
Npg
e”m 3wprr[)
&«ﬂa“H‘W sv '()la++¢“ cnw/ FEA-‘\'URE"M

L D] comeat awca‘r
BL |
" 3

Sparse vs. Sparse-Dense vs Dense (conv2d()):
differ by the TYPE OF MULTIPLICATION
o Sparse: SPARSE x DENSE

tf.sparse_tensor_dense_matmul(filter, patches mx, adjoint_b=True)
Where filter is a sparse matrix

o Sparse-Dense: DENSE x DENSE with SPARSE OPTIMIZATION:
tf.matmul(patches _mvx, filter, b_is_sparse=True)
Where filter is a dense matrix

Performance of sparse and sparse-dense convolutions
160/ | ---* Dense Bl sparse [sparse-dense

140¢

120}

Time (ms)
’-l
(o] o
— N

0.3
Sparsity

G ERL

Input (float] QuantizedMatMul QuantizedMatMul
Input (float) [it (o) ,
\ ElghtBﬂl Min | Max
Min Max
Quantize
Eight Bit Min | M
Relu ’ !
QuantizedRelu Eight Bit Min | Max Eight Bit Min | Max
Eight Bit Min | Max QuantizedRelu QuantizedRelu
Eight Bit Min | Max Eight Bit Min | Max
Dequantize
! Dequantize Dequantize
[Output (float)]) .
| Output (float) | | Output (float) | [Output (float)]

o Weights quantized uniformly between Min/Max values

o Min/Max values (range) are defined in an “optimal” way,
rather than plain min/max floats to retain proper resolution

Source link:
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/comment-page-1/#comment-99004

G ERL

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/comment-page-1/#comment-99004

Quantization: Tool and Results

Modes:

Weights - round, compress (dequantize at runtime)
Quantize - quantize weights and the operations (described in the
tutorial)
Weights_rounded - round weights to buckets, but don’t compress
There are a few bugs: only 8 bit weight quantization worked
Requires preparation special *.pb files with frozen weights from *.meta

files and checkpoints

100

98

96 +

%

8bit weight quantization results

Test accuracy

94.7

94.7 (x1.000)

snet snetW8bit

n

E

30+
25+
20}
15}
10}

5}

Inference time

23:1

snet snetW8bit

(x1.173) 1

MB
O N » O ®

12+
10+

Snapshot size

shet

0.9

(x0.261)

snetW8bit]

ERL

Architectures:
o Width reduction (reduce # of parameters in every layer):
snetXN - # of parameters reduced ~N times
= snetX2, snetX4, snetX8
» Height reduction (reduce # of parameters by stripping layers):

50+

40t

20+

10+

snetDXN - # of layers reduced ~N times

Inference time

48.1

18.5
(x0.385)
12.3

11.4
(x0.256) (x0.237) (x

10.0
0.208)

12.0
(x0.249)

gnet snet snetX2 snetX4 snetX8

snetDX2

60 -

50+

40t

20+

10+

Snapshot size

54.3
9.8
(x0.180) - |
. (x02.6953) 006917 0a (x0.102)
EE 0017 (x0.007) |
gnet snet snetX2 snetX4 snetX8 snetDX2

G ERL

Smaller SqueezeNets: Training

| Orlglnal Labels GNet SNet SNetX2 SNetX4 SNetX8

: i = : =
E “ ‘-_.-\.\‘
Py \,‘-_ 2|
e ‘

95.3% 94.7% 94.9% 94.6% 92%

Legend:
o s/h = weights of losses from soft/hard labels in the final weighted loss, i.e.
Loss = s * Loss_softlabel + h * Loss _hardlabels

Accuracies for different temperatures and
soft/hard loss coefficients

0.96 - T
- - base Il s/h=050/0.50
B s/h =0.00/1.00 1 s/h =0.90/0.10
095 W s/h =0.25/0.75 [s/h=1.00/0.00F
0.94 +
> o—
8
5 0.93
U —
&

0.92

0.91

0.90 — — —
1.0 2.0 4.0 8.0

ConCI US ion . Temperatures
Distillation may help, but there is no clear rule to pick up parameters

ERL

Distillation: snet to shetX8

Orlglnal Labels GNet SNet SNetX8 distil SNetX8

95.3% 94.7% 92% 93.4%

* Quantization:
o Does full 8-bit quantization give speed boost ?

o Distillation:
o Incorporate intermediate feature maps into distillation

o Sparse multiplication:
o Can we do better ?

o Architectural changes to SqueezeNet:
o More graduate upsampling (4 stages instead of 2) +
o (Get features from earlier feature maps

» Removing\Resetting correlated filters

G ERL

QUESTIONS ?77?

G ERL

e Features and labels:
o [feat/.. - group containing different features
o /label/.. - group containing different labels
e Cross-validation indices (for consistent comparison)
o /crossval_indx/[index]/train
o /crossval_indx/[index]/val
o /crossval_indx/[index]/test
e Names for cross-validations
(in case they have semantic meaning, like testing on different unseen objects)
o /crossval names

G ERL

