
ERL PML
Deep Learning meeting

07/15/2016

Artem Molchanov

Overview
● Architectures

○ Inception V1: TF from scratch
(baseline to compare to SqueezeNet)

○ SqueezeNet:
■ Design choices
■ Architecture
■ Training vs Inception V1

● Compression
○ Pruning. Can it help ?

■ Convolutions in a nutshell
■ Sparse convolutions vs Sparse-dense vs conv2d. Results
■ Discussion

○ Quantization
■ Overview of the toolkit
■ 8-bit quantization results

○ Smaller SqueezeNets
■ Architectures
■ Training results

○ Distillation: SNet to SNetX8
○ Next steps

Inception V1: TF training from scratch
Previous results

(caffe)
New results (TF)
Last snapshot

New results (TF)
Best snapshot

Ground TruthOriginal

Main ideas:
● Replace 3x3 filters with 1x1 filters
● Decrease number of input channels (squeeze)
● Postpone downsampling (convolve with stride 1)

SqeezeNet: Design choices. Fire modules

SqeezeNet: Architecture

conv1
(stride2) fire2 fire3maxpool/2

fire4 fire5maxpool/2

fire6 fire7maxpool/2 fire8 fire9

1

1 2

2 3

upsample
X4

upsample
X43 softmax

400X640

200X320 100X160

50X80

25X40

100X160 400X640

64 64 64 64

64 128 128

128 192 192 256 256

256 4 4

SqeezeNet: Training
Inception V1 SqueezeNetGround TruthOriginal

What conv2d() do:
● Flattens the filter to a 2-D matrix with shape

[filter_height * filter_width * in_channels, output_channels].

● Extracts image patches from the input tensor to form a virtual tensor of shape
[batch * out_height * out_width, filter_height * filter_width * in_channels].

● For each patch, right-multiplies the filter matrix and the image patch vector.

Convolution in a nutshell

Sparse vs. Sparse-Dense vs Dense (conv2d()):
differ by the TYPE OF MULTIPLICATION
● Sparse: SPARSE x DENSE

tf.sparse_tensor_dense_matmul(filter, patches_mx, adjoint_b=True)
Where filter is a sparse matrix

● Sparse-Dense: DENSE x DENSE with SPARSE OPTIMIZATION:
tf.matmul(patches_mx, filter, b_is_sparse=True)
Where filter is a dense matrix

Convolutions: Sparse vs Sparse-Dense

Source link:
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/comment-page-1/#comment-99004

Quantization: Overview

● Weights quantized uniformly between Min/Max values

● Min/Max values (range) are defined in an “optimal” way,
rather than plain min/max floats to retain proper resolution

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/comment-page-1/#comment-99004

Quantization: Tool and Results
● Modes:

○ Weights - round, compress (dequantize at runtime)
○ Quantize - quantize weights and the operations (described in the

tutorial)
○ Weights_rounded - round weights to buckets, but don’t compress

● There are a few bugs: only 8 bit weight quantization worked
● Requires preparation special *.pb files with frozen weights from *.meta

files and checkpoints

8bit weight quantization results

Smaller SqueezeNets: Architectures

Architectures:
● Width reduction (reduce # of parameters in every layer):

○ snetXN - # of parameters reduced ~N times
■ snetX2, snetX4, snetX8

● Height reduction (reduce # of parameters by stripping layers):
○ snetDXN - # of layers reduced ~N times

Smaller SqueezeNets: Training
Original Labels GNet SNet SNetX2 SNetX4 SNetX8

 95.3% 94.7% 94.9% 94.6% 92%

Distillation: snet to snetX8
Legend:
● s/h = weights of losses from soft/hard labels in the final weighted loss, i.e.

Loss = s * Loss_softlabel + h * Loss_hardlabels

Conclusion:
Distillation may help, but there is no clear rule to pick up parameters

Distillation: snet to snetX8

Original Labels GNet SNet SNetX8 distil SNetX8

 95.3% 94.7% 92% 93.4%

● Quantization:
○ Does full 8-bit quantization give speed boost ?

● Distillation:
○ Incorporate intermediate feature maps into distillation

● Sparse multiplication:
○ Can we do better ?

● Architectural changes to SqueezeNet:
○ More graduate upsampling (4 stages instead of 2) +
○ Get features from earlier feature maps

● Removing\Resetting correlated filters

Next steps:

QUESTIONS ???

Discussion:

● Features and labels:
○ /feat/.. - group containing different features
○ /label/.. - group containing different labels

● Cross-validation indices (for consistent comparison)
○ /crossval_indx/[index]/train
○ /crossval_indx/[index]/val
○ /crossval_indx/[index]/test

● Names for cross-validations
(in case they have semantic meaning, like testing on different unseen objects)
○ /crossval_names

HDF5: file structure

