ERL PML Deep Learning meeting 08/24/2016

Artem Molchanov

Overview

Compression

- Quantization
 - 8-bit with ops results
- Pruning
 - Fully connected layers: Model
 - Fully connected layers: Results
 - Sparse CNN re-running
- Intermediate feature learning
 - Max/Avg pooling features
- Discussion

Quantization: Results for Inception V3

- Inception V3 net
- Legend:
 - **Orig -** no quantization
 - Weights weight quantization (dequantize at runtime)
 - **Ops** quantized ops and weights

8bit quantization results

Pruning: FCN. MNIST model

Simple MNIST model:

- 2 convolutional layers
- 2 fully connected layers
- Softmax

FC implementation:

- Dense:
 - tf.matmul(activations, w_dense)
- Sparse:
 - h_mult = tf.sparse_tensor_dense_matmul(w_sparse, activations, adjoint_a=True, adjoint_b=True) h_mult_tr = tf.transpose(h_mult)

Re-Training implementation (to keep weights == 0):

- Gradient masking (see example)
- Tool:
 - With no effort can prune *.ckpt (*.pb) model w/o retraining.
 - Retraining is task specific: add gradient masking to your implementation
 - Independent sparse model is required (see example)

Pruning: FCN results

• Results:

- Minor loss after pruning and retraining
- Accuracies are equivalent for sparse/dense
- Linear improvement in performance
- Linear decrease in size
- Dense model outperforms the sparse one !

Pruning: sparse CNN re-run

Sparse-Dense == convolution re-implemented using:

• **tf.matmul**(activations, W, **b_is_sparse**)

Intermediate Features: Max/Avg pooling

- Intermediate features extracted from **SqueezeNet** and learned by **SqueezeNetX8** (8-times more narrow)
- Extraction is done for every maxpooling layer (i.e. 3 sets of features)

• Quantization:

- Linear decrease in size (x4 for 8 bit)
- Inference time increases 20-60 %
- No loss in accuracy

• Pruning:

- Almost linear decrease in size (up to x10 for FC)
- Increase in inference time due to inefficient implementation of sparse operations in TF
- Minor loss in accuracy
- Model reduction with Distillation:
 - Better than linear decrease in size for convolutions
 - Decrease in inference time (30-40% for segmentation)
 - Minor loss in accuracy

THANKS TO THE WHOLE ERL TEAM !

