

o Compression
o Quantization
= 8-bit with ops results

o Pruning
= Fully connected layers: Model
= Fully connected layers: Results
= Sparse CNN re-running

¢ Intermediate feature learning
o Max/Avg pooling features

o Discussion

G ERL

® Inception V3 net

» Legend:
o 0rig - no quantization
o Weights - weight quantization (dequantize at runtime)
o Ops - quantized ops and weights

8bit quantization results

Snapshot size

Inference time

10° , : 100F .
13080.0 | 912

Lol (x266.939) 8ol

60|

g 10° s
79.0 A0 93T 23.1
10°h 490 (xL.612) - (x0.253) (x0.253)
1

orig weights ops orig weights ops

G ERL

Pruning: FCN. MNIST model

Simple MNIST model:
2 convolutional layers
2 fully connected layers
Softmax
FC implementation:
Dense:
tf.matmul(activations, w_dense)
Sparse:
h_mult = tf.sparse_tensor_dense_matmul(w _sparse,
activations, adjoint_a=True, adjoint_b=True)
h_mult_tr = tf.transpose(h_mult)
Re-Training implementation (to keep weights == 0):
Gradient masking (see example)
Tool:
With no effort can prune *.ckpt (*.pb) model w/o retraining.
Retraining is task specific: add gradient masking to your
implementation
Independent sparse model is required (see example)

Q ERL
| [. |
e |

1.000

0.995¢

0.990

0.985

0.980

Accuracy
Bl Sparse [Dense

ms

1.0 0.7 0.5 0.3 0.1
Density

Results:

10

Inference time

Il Sparse

I Dense

1.0

0.7

0.5
Density

0.3 0.1

o Minor loss after pruning and retraining

O O O O

Accuracies are equivalent for sparse/dense
Linear improvement in performance
Linear decrease in size
Dense model outperforms the sparse one !

Size

-== Dense Ell Sparse]

1.0 0.7 0.5 0.3 0.1
Density

G ERL

Sparse-Dense == convolution re-implemented using:
e tf.matmul(activations, W, b_is sparse)

b _is_sparse = True

Inference time vs density

Dense [Sparse-Dense

160} | ==~

El Sparse

0.01 0.05 ©0.1 0.3

Density

0.5 0.7 0.9

160F| wuen

140}

b _is _sparse = False

(normal dense muiltiplication)
Inference time vs density

Dense
Il Sparse

I Sparse-Dense

0.01

0.05 0.1 0.3

Density

0.5 0.7 0:9

G ERL

e Intermediate features extracted from SqueezeNet and
learned by SqueezeNetX8 (8-times more narrow)

e [Extraction is done for every maxpooling layer (i.e. 3 sets of features)
Intermediate

Features
for learning

100 Test accuracy

98+

i 93.2
Next layer of the oal (X3?9-34, (x0.998) 93.4

SqueezeNet ...

92+

90+

88L

distillation

G ERL

max-pooled avg-pooled

Compression: Lessons learned

e Quantization:
o Linear decrease in size (x4 for 8 bit)
o Inference time increases 20-60 %
o No loss in accuracy
e Pruning:
o Almost linear decrease in size (up to x10 for FC)
o Increase in inference time due to inefficient
implementation of sparse operations in TF
o Minor loss in accuracy
e Model reduction with Distillation:
o Better than linear decrease in size for convolutions
o Decrease in inference time (30-40% for segmentation)
o Minor loss in accuracy

THANKS TO
THE WHOLE ERL TEAM !

CHERL

