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® Inception V3 net

» Legend:
o 0rig - no quantization
o Weights - weight quantization (dequantize at runtime)
o Ops - quantized ops and weights

8bit quantization results
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Pruning: FCN. MNIST model

Simple MNIST model:
2 convolutional layers
2 fully connected layers
Softmax
FC implementation:
Dense:
tf.matmul(activations, w_dense)
Sparse:
h_mult = tf.sparse_tensor_dense_matmul(w _sparse,
activations, adjoint_a=True, adjoint_b=True)
h_mult_tr = tf.transpose(h_mult)
Re-Training implementation (to keep weights == 0):
Gradient masking (see example)
Tool:
With no effort can prune *.ckpt (*.pb) model w/o retraining.
Retraining is task specific: add gradient masking to your
implementation
Independent sparse model is required (see example)
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o Minor loss after pruning and retraining
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Accuracies are equivalent for sparse/dense
Linear improvement in performance
Linear decrease in size
Dense model outperforms the sparse one !
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Sparse-Dense == convolution re-implemented using:
e tf.matmul(activations, W, b_is sparse)

b _is_sparse = True

Inference time vs density
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e Intermediate features extracted from SqueezeNet and
learned by SqueezeNetX8 (8-times more narrow)

e [Extraction is done for every maxpooling layer (i.e. 3 sets of features)
Intermediate

Features
for learning
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Compression: Lessons learned

e Quantization:
o Linear decrease in size (x4 for 8 bit)
o Inference time increases 20-60 %
o No loss in accuracy
e Pruning:
o Almost linear decrease in size (up to x10 for FC)
o Increase in inference time due to inefficient
implementation of sparse operations in TF
o Minor loss in accuracy
e Model reduction with Distillation:
o Better than linear decrease in size for convolutions
o Decrease in inference time (30-40% for segmentation)
o Minor loss in accuracy
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