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Abstract— Manipulation tasks often require robots to make
contact between a grasped tool and another object in the robot’s
environment. The ability to detect and estimate the positions
and directions of these contact points is crucial for monitoring
the progress of the task, and detecting failures. In this paper,
we present a data-driven approach for detecting and localizing
contacts between a grasped object and the environment using
tactile sensing. We explore framing the contact localization as
both a regression and a classification problem and train neural
networks accordingly to estimate the contact parameters. We
also compare the neural networks with Gaussian process re-
gression and support vector machine classification with spatio-
temporal hierarchical matching pursuit feature learning. We
evaluate the presented approach using hundreds of contact
events on eighteen objects with different shapes, sizes and
material properties. The experiments show that the neural
network approach can learn to localize contact events for
individual objects with a mean absolute error of less than
2.5 cm for the positions and less than 10◦ for the directions.

I. INTRODUCTION

Many manipulations in unstructured environments require
a robot to use a grasped object, i.e., a tool, to interact with
other objects. Often, a specific part of the tool, such as
the tool’s tip, needs to make contact with another object to
perform the manipulation. For example, a hammer should
make contact with a nail on the flat surface of its head
when performing a hammering task. By sensing if and where
the tool has made contact, the robot can verify that it is
performing the skill correctly and otherwise adapt the skill
accordingly.

The task of localizing contacts has usually been ap-
proached using either wrist-mounted force-torque sensors or
joint torque sensors. However, approaches based on these
sensors face challenges such as bias drift and, in some
cases, they require an accurate model of the robot and
the grasped object. Tactile sensors provide another sensor
modality that can be used to estimate contact parameters.
Recent developments in the tactile sensor technologies have
provided robots with human-like tactile signals [1]. The large
amount of data provided by these sensors could potentially
result in significantly more robust manipulation skills for
robots. However, in order to fullfil this potential, the robots
will also need suitable estimation methods to process the
tactile data.

In this work, we explore using machine learning methods
to estimate contact parameters between grasped objects and
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the environment based on data from biomimetic tactile
sensors (BioTacs) [1]. In particular, we investigate estimating
the positions and (force) directions of contacts using neural
network (NN) classification and regression, Gaussian pro-
cess regression (GPR), and support vector machine (SVM)
classification with features learned using spatio-temporal
hierarchical matching pursuit (ST-HMP) [2]. We evaluate
the methods using data collected from 18 objects with
different shapes, sizes and materials. In our work, we rely
on a few assumptions. First, we restrict our contacts to the
transient type, i.e., short taps or bumps. We also restrict our
investigation to a single contact point and perform object
dependent learning.

The key contributions of this work are: a) a model-
free approach for estimating contact positions and directions
between the environment and a grasped object based on
tactile signals, b) an accurate labelled dataset1 for evaluating
and benchmarking contact localization methods, and c) an
evaluation of the presented approaches using real robot
experiments.

II. POINT-OF-CONTACT ESTIMATION

Our contact learning pipeline consists of two main parts:
contact detection and contact localization.

A. Contact Detection and Feature Extraction

We detect contact events by applying threshold on the
high-pass filtered pressure vibration (PAC) signals extracted
from the BioTac sensor. In order to remove jitter, closely
located events are reduced into a single event using DB-
SCAN [3] algorithm. The resulting clusters in time dimen-
sion define the beginning and the end of every contact event.

To form a feature vector for localizing the contact
point, we extract the values of the tactile signals (elec-
trodes (Electr), pressure vibration (PAC), DC pressure
(PDC) after a contact event is detected. We use a window
of t = 25 consecutive time steps at a sampling rate of
100Hz from the beginning of the event. In order to reduce the
influence of gravity on the baseline values of tactile readings,
we subtract the average signal values of the three time steps
immediately before the contact event.

B. Regression

We parametrize the location of the contact point using its
Cartesian position (x, y, z) relative to the robot’s palm. The
direction of the contact is parametrized using yaw and pitch.

1The dataset is available at http://bicl.robotics.usc.edu

http://bicl.robotics.usc.edu


Fig. 1: The 18 objects and an example of a grasp used for
data collection.

We compare two different machine learning techniques for
learning the contact estimation function: NN and GPR.

The NN architecture consists of two fully connected
hidden layers with 900 neurons each. The training of the
NN is performed in a supervised manner using stochastic
gradient descent with the Euclidean quadratic loss function.

We compare NN regression with GPR, a state-of-the-art
non-parametric Bayesian supervised learning approach with
automatic relevance determination (ARD).

Due to the high computational cost of GPs, we compute
the average signal values during contact event window and
use them as features.

C. Classification

In the classification approach, we represent the point-of-
contact in the form of a distribution over the discretized
contact pose parameters.

For NN we use the same architecture for the estimator,
however for classification the NN output is converted to
the distribution over labels using softmax. Furthermore,
we use RMSprop adaptive learning rate with cross-entropy
classification loss for training. We train separate classifiers
for each contact pose parameter (x,y,z,yaw,pitch) to reduce
number of classes for learning.

We also apply linear SVM in combination with ST-
HMP [2] to perform the classification.

III. EVALUATION

A. Data Collection Setup

The goal of this experiment is to evaluate the accuracy
of the contact localization using the proposed methods. The
experiments were performed using a three-fingered Barrett
hand. Each finger tip is equipped with a BioTac tactile sensor.

Eighteen objects with a variety of sizes and materials were
chosen for this experiment (see Fig. 1). During the data
collection, the robot held one of the objects (see Fig. 1 for
an example grasp) while a person tapped the object with a
Vicon-tracked plastic rod.

The BioTac sensor readings were then extracted using the
contact detection method described in Section II-A. Using
this approach, we collected ≈ 15100 samples for all 18
objects.

B. Results and Discussion

Fig. 2 shows the mean absolute error (MAE) calculated
from errors of all 18 objects. We evaluated NN regression
using electrode features (NN:Electr) and using the full fea-
ture set (NN:Electr+PAC+PDC). We also evaluated GPR
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Fig. 2: Results of regression using different sensor modalities
for NN and GP regressors.

x y z xyz
0.5

1

1.5

2

2.5

3

3.5

M
A
E
(c
m
)

yaw pitch

8

9.25

10.5

11.75

13

14.25

15.5

16.75

M
A
E
(d
eg
re
es
)

NN:Electr NN:Electr+PAC+PDC ST-HMP:Electr

Fig. 3: Results of classification using different sets of sensor
modalities for NN and SVM classifiers.

using the full feature set (GP:Electr+PAC+PDC). The three
regression approaches resulted in considerable errors that, in
some cases, exceed 50% of the object’s size. Such significant
errors are probably caused by ambiguities in the mapping be-
tween features and the estimated contact parameters, which
can not be represented properly by the regression. These
results motivated us to approach our problem from the point
of classification.

Similar to the regression approach, we also evaluated NN
classifiers using only the electrode features and using the full
set of features. For this experiment, we pick a 1cm/5◦ grid
with 25 time steps as a baseline parameter set. Fig. 3 presents
the MAE across the test sample sets of all 18 objects using
our classification approach described in Section II-C. We also
combine predictions of individual dimensions in Cartesian
coordinates for every sample in order to calculate the average
Euclidean norm of the error vector for all location predictions
(xyz on the figure). The results indicate that electrodes are the
most relevant features for contact localization. Incorporation
of PAC and PDC injects additional noise and leads to
overfitting. Fig. 3 also shows that NN outperforms ST-HMP
approach for both Cartesian and angular coordinates (for
more details about the work please see [4]).
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