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Abstract— Manipulation tasks often require robots to make
contact between a grasped tool and another object in the robot’s
environment. The ability to detect and estimate the positions
and directions of these contact points is crucial for monitoring
the progress of the task, and detecting failures. In this paper,
we present a data-driven approach for detecting and localizing
contacts between a grasped object and the environment using
tactile sensing. We explore framing the contact localization as
both a regression and a classification problem and train neural
networks accordingly to estimate the contact parameters. We
also compare the neural networks with Gaussian process re-
gression and support vector machine classification with spatio-
temporal hierarchical matching pursuit feature learning. We
evaluate the presented approach using hundreds of contact
events on eighteen objects with different shapes, sizes and
material properties. The experiments show that the neural
network approach can learn to localize contact events for
individual objects with a mean absolute error of less than
2.5 cm for the positions and less than 10◦ for the directions.

I. INTRODUCTION

Many manipulations in unstructured environments require
a robot to use a grasped object, i.e., a tool, to interact with
other objects. Often, a specific part of the tool, such as
the tool’s tip, needs to make contact with another object to
perform the manipulation. For example, a hammer should
make contact with a nail on the flat surface of its head
when performing a hammering task. By sensing if and where
the tool has made contact, the robot can verify that it is
performing the skill correctly and otherwise adapt the skill
accordingly.

Detecting transient contacts between a handheld object
and other objects is particularly important when considering
obstacles in the environment. For example, when placing
a box on a cluttered table top, the robot may detect an
unexpected contact on the side of the box rather than on
the bottom. In this case, the robot should immediately stop
executing the skill to prevent damaging the object and either
place it at a different location or move the obstacles.

The task of localizing contacts has usually been ap-
proached using either wrist-mounted force-torque sensors or
joint torque sensors. However, approaches based on these
sensors face challenges such as bias drift and, in some cases,
they require an accurate model of the robot and the grasped
object. Tactile sensors provide another sensor modality that
can be used to estimate contact parameters. Although current
tactile sensors are not at human-performance levels [1],
recent developments in the field have provided robots with
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human-like tactile sensor modalities [2], e.g., pressure, vi-
brations and temperature. The large amount of data provided
by these sensors could potentially result in significantly more
robust manipulation skills for robots. However, in order
to fullfil this potential, the robots will also need suitable
estimation methods to process the tactile data.

In this work, we explore using machine learning methods
to estimate contact parameters between grasped objects and
the environment based on data from biomimetic tactile
sensors (BioTacs) [2]. In particular, we investigate estimating
the positions and directions of contact points using neural
network (NN) classification and regression, Gaussian pro-
cess (GP) regression, and support vector machine (SVM)
classification with features learned using spatio-temporal
hierarchical matching pursuit (ST-HMP) [3]. We evaluate the
methods using data collected from 18 objects with different
shapes, sizes and materials. The experiments were designed
to provide accurate ground truth information of the contact
events and the contact parameters. In our work, we rely
on a few assumptions. First, we restrict our contacts to the
transient type, i.e., short taps, which correspond to tactile
events such as bumping into objects or making contact. We
also restrict our investigation to a single contact point and
perform object dependent learning.

The key contributions of this work are: a) a model-
free approach for estimating contact positions and directions
between the environment and a grasped object based on
tactile signals, b) an accurate labelled dataset1 for evaluating
and benchmarking contact localization methods, and c) an
evaluation of the presented approaches using real robot
experiments.

II. RELATED WORK

The problem of contact detection and localization has
received significant attention in the literature. The majority of
the related approaches use force-torque sensors and analyti-
cal models to estimate the contact location. These methods
often rely on accurate and precise calibrations of the force-
torque sensors. For example, Karayiannidis et al. [4] estimate
a point of contact using first order differential kinematics in
combination with force-torque measurements. This approach
is only applicable to rigid grasps where the object cannot
slip in the hand, as it assumes knowledge of the static
center of mass of the object. Likar et al. [5] present an
approach that estimates the force and the point of contact
from joint torque information. Their method requires exact
knowledge of the robot’s dynamics, which are often difficult

1The dataset is available at http://bicl.robotics.usc.edu
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to obtain for real robots. Some works do not estimate contact
locations explicitly but rather use force-torque measurements
to estimate other task-relevant states, such as the alignment
errors in the peg-in-hole problem [6] or the transitions
between contact states for assembly tasks [7].

Other methods exploit geometric models of the robot
to estimate the points of contact of the manipulator with
the environment. For example, Petrovskaya et al. [8] use
compliant motions in order to simultaneously estimate ge-
ometric parameters of the robot’s links and the points of
contact. The link parameters are estimated using a least
squares approach while the contact points are inferred using a
Bayesian approach. Koonjul et al. [9] propose two geometry-
based approaches. The first approach extends the self posture
changeability method [10] to use multiple compliant joints,
while the second approach is a model-free method that maps
joint displacements directly to the point of contact.

Tactile sensors have also been used for contact estimation,
but most of the work has focused on estimating contact
locations and interaction forces on robotic digits [11], [12].
Tactile sensors have also been used to estimate other object
properties, e.g., the object’s pose or material properties. For
example, Corcoran and Platt [13] use particle filters to
estimate the pose of an object based on its contacts with
a robot hand. The pose of the object during manipulation
is estimated by a measurement model which integrates the
likelihood of contact measurements over the space of all
possible contact positions on the surface of the object. Li
et al. [14] use vision-based tactile sensor, GelSight, to
localize objects in a robot hand by matching key points
between object height maps with RANSAC. Su et al. [15]
use the bio-inspired structure of BioTac sensors to achieve
high-sensitivity in estimating the orientation of the contacted
object. In contrast to previous work on estimating the pose
of grasped objects or localizing contacts on the surface of
robotic digits, our work focuses on estimating the locations
of contacts between grasped objects and the environment.

Contact points can also be estimated using vision-based
methods. Bernab et al. [16] propose a method that combines
robot motion with point-cloud-based object tracking to es-
timate the location of contacts on an occupancy grid map.
Hu et al. [17] use vision features, such as binocular disparity,
shadows, and inter-reflections, to detect imminent contact for
manipulation tasks. Due to poor accuracy and ambiguity in
contact localization caused by visual occlusions, vision-based
methods are generally not meant to be used alone, but rather
in combination with other sensors.

Different sensor modalities for estimating contact pa-
rameters provide complimentary strengths and limitations
[18]. A robot can therefore often obtain a more accurate
estimate by fusing the data from multiple sources. Felip
et al. [19] present a method that fuses multiple hypotheses
from different modalities, including force-torque, tactile, and
range sensors, to compute the likelihood of contact points.
In their framework, pressure-sensitive tactile sensors on the
hand are used to generate hypothesis for contacts between the
object and the hand. Ishikawa et al. [20] propose estimating

a contact point by intersecting a force line acquired using
force-torque sensor measurements and the plane containing
the contact point extracted using a task specific vision
system.

In this work, we investigate the problem of estimating the
contact point between a grasped object and the environment
using tactile sensors. This problem is challenging as the
contact point is not made directly with the tactile sensor.
The robot must therefore estimate the contact point based
on the forces and vibrations transferred through the grasped
object. Rather than relying on analytical models, we propose
a model-free data driven approach to the problem.

Object-environment contacts have usually been estimated
using force-torque data from wrist-mounted sensors. How-
ever, tactile sensing also provides important information for
detecting and estimating these contacts [21]. Our proposed
approach thus provides an alternative sensor modality for
estimating contacts, which could be combined with other
modalities in a sensor fusion framework. Similar to other
approaches for estimating object-environment contacts, we
assume a single point of contact. We plan on extending the
presented approach to multiple contacts in the future.

III. BIOMIMETIC TACTILE SENSOR

In our experiments, we use a haptically-enabled Barrett
robot arm with a three-fingered Barrett hand. Each finger
is equipped with a biomimetic tactile sensor (BioTac) [2].
Each BioTac consists of a rigid core containing an array of
19 electrodes surrounded by an elastic skin, as illustrated
in Fig. 1. The skin is inflated with an incompressible and
conductive liquid.

The BioTac provides three complementary sensory modal-
ities: force, pressure, and temperature. When the skin is in
contact with an object, the liquid is displaced, resulting in
distributed impedance changes in the electrode array. The
impedance of each electrode depends on the local thickness
of the liquid between the electrode and the skin. Micro-
vibrations in the skin propagate through the fluid and are
detected by the hydro-acoustic pressure sensor. The high-
and low-frequency pressure vibration signals are referred
to as PAC and PDC respectively. Temperature and heat
flow are transduced by a thermistor near the surface of the
rigid core. Since temperature conditions do not change in
our experiments we do not consider this modality for our
analysis.

IV. POINT-OF-CONTACT ESTIMATION

In this section, we describe our pipeline for estimating
the point of contact from tactile data. Our contact learning
pipeline consists of two main parts: contact detection and
contact localization. In Section IV-A, we describe how the
robot estimates the time of contact. The contact localization
is subsequently performed using the tactile data around this
time point, as described in Section IV-B. Contact point local-
ization can be framed as either a regression or a classification
problem. We show how the contacts can be localized using
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Fig. 1: Cross-sectional schematic of the BioTac sensor
(adapted from [22]).

neural network or Gaussian process regression in Section IV-
C. In Section IV-D, we explain how the contact parameters
can be estimated using neural network or support vector
machine classifiers.

A. Contact Detection

Similar to fast afferents in human skin [21], we detect
contact events using the high frequency vibration signals
extracted from the BioTac sensor. The robot uses a 5-th
order high-pass Butterworth filter with a cut-off frequency
of 20 Hz to remove biases. Contact event candidates are
then extracted by detecting when the filtered pressure signal
passes a threshold value. In our experiments, we used a
threshold value of 500. In order to remove jitter, closely
located events are reduced into a single event using the
density based spatial clustering of applications with noise
(DBSCAN) [23] algorithm. The resulting clusters in time
dimension define the beginning and the end of every contact
event.

B. Feature Extraction

The BioTacs’ electrodes and hydro-acoustic pressure sen-
sors provide multimodal tactile data for localizing contacts.
To form a feature vector for localizing the contact point, we
extract the values of the tactile signals after a contact event
is detected. We use a window of t = 25 consecutive time
steps at a sampling rate of 100Hz from the beginning of
the event. The size of the window corresponds to the mean
duration of the detected contact events plus two standard
deviations. The resulting feature vector consists of the PAC,
PDC, and 19 electrode signals collected from the three
fingers and concatenated over the time window resulting in
s× t = (2+19)×3×25 = 1575 features. In order to reduce
the influence of gravity on the tactile readings, we subtract
the average signal values of the three time steps immediately
before the contact event.

C. Regression

We parametrize the location of the contact point using its
Cartesian position (x, y, z) relative to the robot’s palm. The
direction of the contact’s direction is parametrized using the
yaw (ψ - rotation around z axis) and the pitch (ν - rotation
around y axis). The wrist coordinate frame is shown in Fig. 6.

We exclude the rotation around the contact’s direction, i.e.,
roll, from the parametrization, as it is ambiguous for a single
point of contact.

Our regression approach learns a separate mapping from
the tactile features d ∈ Rsṫ, described in Section IV-B,
to each of the five continuous contact point parameters
{x, y, z, ψ, ν}, which we denote as ĉ ∈ R. We define the
function as

ĉ = f(d, θ), (1)

where θ is a vector of function parameters that define the
mapping from features to contact parameters. We compare
two different machine learning techniques for learning the
contact estimation function: neural networks and Gaussian
processes.

The NN architecture consists of two fully connected
hidden layers with 900 neurons each. The training of the
NN is performed in a supervised manner using stochastic
gradient descend with the Euclidean quadratic loss function

Le =
1

2N

N∑
i=1

(ĉn − cn)2, (2)

where ĉn ∈ R is the predicted value of a contact parameter,
cn ∈ R is the ground truth value of the parameter, and N
is the number of samples in the training set. To avoid over-
fitting, we use dropout for the hidden layers with a dropout
ratio of 0.5, and we pick the best snapshot on the validation
set observed during the training.

We compare NN regression with GP regression, a state-
of-the-art non-parametric Bayesian supervised learning ap-
proach with automatic relevance determination (ARD). For
the Gaussian process model we use a zero mean function,
a squared exponential ARD kernel, and Gaussian noise.
We also initialize the length scales, signal variance, and
likelihood hyperparameters to 0, 0, and −2.3, respectively.
Due to the high computational cost of GPs, we compute the
average signal values during contact event window and use
them as features, such that d ∈ Rs.

D. Classification

Regression is the standard methodology for learning map-
pings from features to continuous variables. However, the
prediction of the contact parameters from the tactile data
may be ambiguous, with a multi-modal distribution over the
contact parameters. The regression approach would result
in the robot averaging over the multiple possible contact
parameters. Instead, we want the robot to select the most
likely set of contact parameters. This can be achieved by
framing the contact localization as a classification problem.
In the following, we introduce a classification approach for
the contact parameter estimation, which is able to represent
ambiguities by producing a distribution over the possible
contact parameter values.

In the classification approach, we represent the point-of-
contact in the form of a distribution over the discretized



Fig. 2: The 18 objects used for data collection

contact pose parameters:

h(c) = p(c|d, θ), (3)

where c ∈ Z is a one dimensional random variable corre-
sponding to discretized contact parameter values, d ∈ Rsṫ

and θ is the feature vector and classifier parameters as
described in IV-C.

For NN we use the same architecture for the estimator,
however for classification the neural net output is converted
to the distribution over labels using soft-max. Furthermore,
we use RMSprop adaptive learning rate with cross-entropy
classification loss for training:

L = − 1

N

N∑
n=1

ln (ĥln), (4)

where l is the true (target) label, N is the total number
of training samples, and ĥln is the predicted probability for
the target label l of the n-th sample. The target labels are
created by discretizing the continuous ground-truth data and
assigning all values to the corresponding discrete bins. If a
value is inside a particular bin, the corresponding target label
receives the probability value 1 and all other are assigned
probability 0.

Since the combined discretized parameter space produces
a significant number of classes, every class would have only
a few training samples given a limited amount of training
data. This creates a significant obstacle for learning, since
neural networks are typically prone to over-fitting. In order
to mitigate this problem, we use separate classifiers for each
of the five contact pose parameters.

We also apply linear support vector machines (SVMs) to
perform the classification. The robot uses spatio-temporal
hierarchical matching pursuit (ST-HMP) [3] to compute
suitable features for the linear SVM. This feature learn-
ing framework has been successfully used for other tactile
sensing applications, such as accurately predicting grasp
stability [24] and detecting sensory goals using both static
and dynamic tactile signals [25]. Details on how to apply
ST-HMP to BioTacs can be found in the paper of Su et al.
[25].

V. EVALUATION

A. Data Collection Setup
The goal of this experiment is to evaluate the accuracy

of the contact localization using the proposed methods. The

Fig. 3: An example of a grasp used and contact samples
collected during the experiment. Left: an example grasp of
an object. Right: an example of the detected contact points
and directions projected onto the zx plane.
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Fig. 4: The normalized histogram of the peak tapping forces
applied to the object during the experiment.

experiments were performed using a three-fingered Barrett
hand. Each finger tip is equipped with a BioTac tactile sensor.

Eighteen objects with a variety of sizes and materials were
chosen for this experiment. All of the objects are shown
in Fig. 2. The grasped objects’ textures were modified to
prevent slippages during tapping. During the data collection,
the robot held one of the objects (see Fig. 3 for an example
grasp) while a person tapped the object with a plastic rod
shown in Fig. 5. Fig. 4 shows a normalized histogram of
the peak tapping forces applied to the objects, which were
measured using an ATI force-torque plate attached to the
tapping rod. The steady state grip forces applied by the robot
and measured by the normal force on the BioTacs [12], were
11.55N (±5.84N ) among 18 objects.

In order to determine the location and direction of the
contact event, the rod was tracked using a marker-based
Vicon tracking system, as shown in Fig. 5. The wrist of
the robot was also tracked using Vicon markers, as shown
in Fig. 6 with the corresponding coordinate frame. Using
the coordinate frames of the wrist and the rod, the robot
computed the location and direction parameters of the contact
points relative to the robot’s wrist.

The data from the contact events was recorded as a
continuous time series. The BioTac sensor readings were
then extracted using the contact detection method described



O(0;0;0)

P5(67.29; -32.71; 0)

P3(100; -71.26; 0) P4(100; -35; 21.26)

P2(128.74; -34.25; -27.78)

P1(151.26; 0; 0)

Fig. 5: The tapping rod. Left: an image of the rod. Right:
rod coordinate frame with the locations of the markers.

Fig. 6: The wrist band with Vicon markers. Left: CAD model
of the Barrett hand with the band. Right: wrist coordinate
frame with locations of the markers.

in Section IV-A. Using this approach, the robot detected
≈ 15100 samples for all 18 objects. The number of taps
applied to a particular object varied depending on the object’s
size.

In order to evaluate the contact localization 80% of the
collected data was randomly selected to train the estimators
using the methods described in Section IV. The test set
consisted of 12% of the collected data. Since the neural nets
are prone to overfitting to the data if trained for too long, the
remaining 8% of the data was used as a validation set to con-
tinuously evaluate the learners’ generalization performance.
Training continued until no improvement in validation error
was observed during 350 consecutive iterations. The network
with the smallest validation error was selected and evaluated
on the test data. This evaluation process was repeated for all
18 objects.

Since classification requires a finite number of classes, we
define an estimation area around the wrist coordinate frame
as a rectangular box with dimensions: x = −20..20 cm;
y = −10..10 cm; z = 0..30 cm; and discretize these dimen-
sions using different grid sizes: 3 cm, 2.5 cm, 2 cm, 1.5
cm, 1 cm, 0.5 cm and 15◦, 12.5◦, 10◦, 7.5◦, 5◦, 2.5◦ for
Cartesian and angular coordinates respectively, resulting in
13..80 classes for the x dimension; 6..40 classes for the
y dimension; 10..60 classes for the z dimension; 24..144
classes for the yaw and 12..72 classes for the pitch dimension
for different grid sizes. The dimensions of the estimation
area were picked to accommodate sizes of all objects. The
minimal step size for the grid was limited by the Vicon
system’s tracking error.
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Fig. 7: Results of regression using different sensor modalities
for NN and GP regressors. NN:Electr - NN with electrodes
only; NN:Electr+PAC+PDC - NN with the full set of sensor
modalities (electrodes, PAC, PDC); GP:Electr+PAC+PDC -
GP with the full set of sensor modalities. x, y, z, yaw, pitch
are results for independent dimensions. xyz represents results
for combined error, i.e. the norms of the error vectors in
Cartesian space. Errors in Cartesian space are reported in
cm; angular errors are reported in degrees.
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Fig. 8: Results of classification using different sets of sen-
sor modalities: NN:Electr - NN classifier with electrodes
only; NN:Electr+PAC+PDC - NN clasifier with electrodes,
PAC and PDC features; ST-HMP:Electr - ST-HMP feature
learning algorithm with SVM classifier applied to electrode
features.

B. Results and Discussion

Fig. 7 shows the mean absolute error (MAE) calculated
from errors of all 18 objects. We evaluated NN regression
using electrode features (NN:Electr in the figure) and using
the full feature set (NN:Electr+PAC+PDC in the figure). We
also evaluated using Gaussian Processes regression using the
full feature set (Fig. 7 GP:Electr+PAC+PDC). The three
regression approaches resulted in considerable errors that,
in some cases, exceed 50% of the object’s size, although we
did not observe overfitting in either of cases. Such significant
errors are probably caused by ambiguities in the mapping be-
tween features and the estimated contact parameters, which
can not be represented properly by the regression. These
results motivated us to approach our problem from the point
of classification, which is also more suitable for application
of neural networks, where they traditionally show superior
results over other machine learning techniques ([26], [27]).

Similar to the regression approach, we also evaluated NN
classifiers using only the electrode features and using the full
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Fig. 9: Results of NN classification using different time
lengths of features, starting from the moment contact event
is detected.
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Fig. 10: Results of NN classification using different grid
steps.

set of features. For this experiment, we pick a 1cm/5◦ grid
with 25 time steps as a baseline parameter set. Fig. 8 presents
the MAE across the test sample sets of all 18 objects using
our classification approach described in Section IV-D. In this
case, MAE is calculated as the average of the absolute value
of the difference between the real contact point parameters
and the middle of the bin predicted by the classifier. We
also combine predictions of individual dimensions in Carte-
sian coordinates for every sample in order to calculate the
average Euclidean norm of the error vector for all location
predictions. This prediction is denoted as xyz. The results
indicate that electrodes are the most relevant features for
contact localization. Incorporation of PAC and PDC injects
additional noise and leads to overfitting, which is a typical
problem in learning [28]. Thus, for further investigation we
restrict our experiments to electrodes only and apply an SVM
classifier with ST-HMP features extracted from the array of
electrodes (see Fig. 8, ST-HMP:Electr). The results show
that NN classifier outperforms ST-HMP by ≈ 0.9 cm for the
overall Euclidean error and up to 3◦ for angular coordinates.
Given these results, we decided to use the NN classifiers for
the following investigation.

The robot’s reaction time to contacts can play a crucial role
for some applications of the contact localization algorithms,
e.g., if they are used in a control loop. Thus, it is important
to understand what contributes the most to the estimation
delays. For our algorithms, the most significant source of
delays is the data accumulation. For example, 25 time points
with 100 Hz frequency causes a delay of 250 ms, whereas
running forward pass of the NN requires less then 5 ms on a

Fig. 11: An example confusion matrix of the x dimension
classification for one of the objects.

Core i5 CPU. It is therefore interesting to see how the predic-
tion error varies with respect to the number of time steps of
the features collected. Fig. 9 shows the classification MAE
for the NN given different numbers of time steps retained
from the moment the contact event is detected. As one can
see from the figure, the algorithm is quite robust to the time
window size, and its performance degrades gracefully until
five time steps. Below five time steps, the performance starts
dropping. The drop in performance can partially be attributed
to imperfections in the detection pipeline, which introduce
variable time shifting of the signals relative to the position
inside the time window.

In all previous experiments we used a 1 cm/5◦ grid as a
baseline parameter. Thus, it would be interesting to see how
sensitive our classifiers are to the grid resolution used to
discretize the contact parameter estimations. To investigate
that effect, we vary our grid sizes from 0.5 cm/2.5◦ to
3 cm/15◦ with steps of 0.5 cm/2.5◦ and train NN classifiers.
Our results, as shown in Fig. 10, indicate that the MAE does
not change significantly and it does not exceed 3 cm/11◦.
This result means that even if the classifiers cannot guess
the exact label they usually predict one of the adjacent
bins, which indicates that they learn the underlying relations
between different classes. This can also be seen from an
example confusion matrix for the x dimension presented
in Fig. 11. In the confusion matrix, the rows represent the
ground truth (target) classes and the columns represent the
predicted classes. In most cases the recall is quite high
and misclassified labels cluster around the target class. The
results also clearly indicate that classifiers produce almost
no predictions for the classes that were not presented for the
training, thus, making it safe to preallocate larger prediction
areas if needed and keep the architecture of the classifiers the
same while incorporating new data samples into learning.



VI. CONCLUSION AND FUTURE WORK

In this paper, we explored the problems of detecting and
localizing contacts between a held object and the environ-
ment. The contacts were detected by thresholding the Bio-
Tacs’ pressure signals. Contact localization was performed
by applying different machine learning methods, including
neural networks, Gaussian proccesses, and support vector
machines with ST-HMP feature learning, to tactile data. We
framed the contact localization as both a regression and
a classification problem and investigated sensitivity of our
algorithms to time and component-wise changes in the input
features, as well as various discretizations of the parameter
space for our classification approach.

We evaluated our methods using hundreds of contact
events from eighteen objects with different shapes and ma-
terial properties. Our classification approach resulted in the
best performance, with expected localization errors less than
2.5 cm/10◦ for individual objects and poses.

In future work, we will explore the generalization of the
learned classifiers and regressors between different objects,
as well as predicting multi-point contacts.
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[16] J. A. Bernabé, J. Felip, A. P. Del Pobil, and A. Morales, “Contact
localization through robot and object motion from point clouds,” in
2013 13th IEEE-RAS International Conference on Humanoid Robots
(Humanoids). IEEE, 2013, pp. 268–273.

[17] H. H. Hu, A. A. Gooch, W. B. Thompson, B. E. Smits, J. J. Rieser, and
P. Shirley, “Visual cues for imminent object contact in realistic virtual
environment,” in Proceedings of the conference on Visualization’00.
IEEE Computer Society Press, 2000, pp. 179–185.

[18] O. Kroemer, C. Lampert, and J. Peters, “Learning dynamic tactile
sensing with robust vision-based training,” IEEE Transactions on
Robotics (T-Ro), no. 3, pp. 545–557, 2011.

[19] J. Felip, A. Morales, and T. Asfour, “Multi-sensor and prediction
fusion for contact detection and localization,” in 2014 IEEE-RAS Int.
Conf. on Humanoid Robots. IEEE, 2014, pp. 601–607.

[20] T. Ishikawa, S. Sakane, T. Sato, and H. Tsukune, “Estimation of
contact position between a grasped object and the environment based
on sensor fusion of vision and force,” in Multisensor Fusion and In-
tegration for Intelligent Systems, 1996. IEEE/SICE/RSJ International
Conference on. IEEE, 1996, pp. 116–123.

[21] R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals
from the fingertips in object manipulation tasks,” Nature Reviews
Neuroscience, vol. 10, no. 5, pp. 345–359, 2009.

[22] Z. Su, J. Fishel, T. Yamamoto, and G. Loeb, “Use of tactile feedback
to control exploratory movements to characterize object compliance,”
Frontiers in neurorobotics, vol. 6, 2012.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[24] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in IEEE Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 2016 (Accepted).

[25] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal,
“Learning to switch between sensorimotorprimitives using multimodal
haptic signals,” in International Conference on Simulation of Adaptive
Behavior (SAB). Springer, 2016 (Accepted).

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[28] P. M. Domingos, “A few useful things to know about machine
learning.” Commun. ACM, vol. 55, no. 10, pp. 78–87, 2012.


	Introduction
	Related Work
	Biomimetic Tactile Sensor
	Point-of-Contact Estimation
	Contact Detection
	Feature Extraction
	Regression
	Classification

	Evaluation
	Data Collection Setup
	Results and Discussion

	Conclusion and Future Work
	References

