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Abstract— Learning a policy capable of moving an agent
between any two states in the environment is important for
many robotics problems involving navigation and manipulation.
Applying reinforcement learning in these scenarios can be
challenging, especially in the presence of sparse rewards.
Common approaches to tackling this problem include reward
shaping, which requires domain-specific knowledge and might
result in changing the objective of the agent.

We present a region-growing method for enabling an agent to
learn transitions in an environment between any pair of initial
and goal states. Our algorithm first learns how to move between
nearby states and then increases the difficulty of the start-goal
transitions as the agent’s performance improves. This approach
creates an effective curriculum for learning the objective
behavior of reaching any goal from any initial state. Rather than
use reward shaping, which requires domain-specific knowledge
and often causes the objective of the agent to change, we use
sparse rewards, which are a more natural but much more
challenging approach. In addition, we describe a method to
adaptively adjust expansion of the growing region that allows
automatic adjustment of the key exploration hyperparameter
to environments with different requirements. We evaluate our
approach on a set of simulated navigation and manipulation
tasks, where we demonstrate that our algorithm can efficiently
learn a policy in the presence of sparse rewards.

I. INTRODUCTION

In recent years, deep reinforcement learning (Deep RL)
has enjoyed success in many different applications, including
playing Atari games [1], controlling a humanoid robot to
perform various manipulation tasks [2], [3] and beating the
world champion in Go [4]. The success and wide range of
use cases of RL algorithms is partly due to the very general
description of the problem that RL aims to solve, i.e., to
learn autonomous behaviors given a high-level specification
of a task by interacting with the environment. Such high-level
specification is provided by a reward function, which must
be sufficiently descriptive as well as easy to optimize for an
RL algorithm to learn efficiently. These requirements make
the design of the reward function challenging in practice,
creating a bottleneck for an even wider set of applications
for RL algorithms.

The problem of designing a reward function has been
approached in various ways. These include: i) learning the
reward function from human demonstrations in the field of
inverse reinforcement learning (IRL) [5], [6], ii) initializing
the reinforcement learning process with demonstrations in
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imitation learning [2], [7], and iii) creating reward shaping
functions that aim to guide the RL process to high-reward
regions [3], [8]. Although all of these methods have shown
promising solutions to the problem of reward function de-
sign, they present other significant challenges such as the
requirement of domain expertise or access to demonstrations.

Ideally, one would like to learn from a simple sparse
binary reward that indicates completion of the task. Such
a reward signal is natural for many goal-oriented tasks.
It allows significant reduction of engineering effort, and
in some cases can be used to learn complex skills from
human feedback, where design of the reward function is
challenging [9]. However, such a reward function creates
significant difficulties for learning, because it is unlikely for
an agent to generate the exact sequence of actions leading
to solving the task by relying on random exploration [10].

Recent efforts focus on learning from such sparse reward
signals by constructing a curriculum from a continuous set of
tasks [11], [12]. These methods exploit the simple intuition
that tasks initialized closer to the goal should be easier to
solve. Proximity to the goal is defined either explicitly [11]
or through the number of random actions needed to reach the
state from the goal [12]. Nevertheless, these methods have
a common limitation: they are designed for either single-
start or single-goal scenarios. In this paper, we address the
situation in which the task contains both a continuous set
of goals and a continuous set of initial conditions, thus
broadening the applicability of our algorithm to a wider range
of problems. In addition, we introduce a method to adaptively
adjust expansion of the growing region, eliminating manual
tuning of a key exploration hyperparameter whose optimal
value varies across different environments.

II. RELATED WORK

Intrinsic motivation. Learning from sparse rewards is
a long-standing goal in RL. The most established way of
coping with such scenarios has been reward shaping [3],
which requires extensive engineering and domain specific
knowledge. To address this problem, various researchers
proposed curiosity and intrinsic motivation [13], [14] as
a more general way of guiding learning in the absence
of the task-specific reward. Intrinsic motivation is typically
introduced in the form of auxiliary rewards or loss compo-
nents incentivizing exploration, that are not connected to the
main objective. Such incentives could be based on counting
visited states and/or maintaining a state-visitation density
model [15], [16], [17], prediction error [18], prediction error-
improvement of the learned model [19], predictive model



uncertainty [20], neuro-correlation [21] or learning auxiliary
tasks [22]. Despite a wide variety of approaches, many
curiosity-inspired methods are prone to creating additional
local minima in the learned objective function [23].

Curriculum learning. Another approach to learning in
the presence of sparse rewards is to construct a curriculum
of the task instances to ease the learning process. In this
case, the agent initially learns from easy scenarios, where
the chance of acquiring positive reward is relatively high,
and the difficulty of the presented tasks is gradually increased
until the final task is learned. The main advantage of such
an approach is that the agent learns on the final objective
directly, and thus avoids the problems of curiosity-driven
methods. Traditionally, curriculum design has been explored
from the perspective of manually engineered schedules in
both supervised tasks [24], [25] and reinforcement learning
scenarios [26], [27]. More recently, there have also been
multiple approaches for automated curriculum generation for
RL. In [28], the authors create curriculum in the form of
an acyclic graph based on a transfer potential metric, [29]
explore task sampling based on their current performance,
and [30] utilize task performance improvement as a basis
for task sampling. All of these approaches, as opposed to
our method, are designed to perform well in a discrete set
of tasks with dense rewards.

A few recent approaches leverage different types of prior
knowledge about the system to construct an efficient cur-
riculum for continuous sets of tasks. For example, [31] uses
accuracy as the main parameter for constructing curriculum
over possible transitions. Although being general, the notion
of accuracy translates into a form of a known distance metric
associated with the observation space explicitly used by the
algorithm for curriculum learning. Another example is the
work of [32] which leverages physical priors in the form of
approximate system dynamics models to expand the initial
state distribution.

Another related approach by [33] is based on the idea of
self play between two agents. The first agent plays the role of
a teacher that sets the tasks for the second agent, who plays
the role of a student trying to repeat the teacher’s actions or
reverse the environment to its original state. As mentioned by
the authors and confirmed in [12], the asymmetric structure
of this method often leads to a biased exploration resulting
in the teacher and the student becoming stuck in a small
subspace of the task. Our method avoids such situations by
using random exploration to expand the set of goals and the
initial conditions to the appropriate level of difficulty.

Another work related to our approach is that of [11] that
considers the problem of generating multiple goals of the
appropriate level of difficulty using generative adversarial
networks (GANs) [34]. Their approach is designed to learn
a goal distribution and thus, in its straightforward form,
cannot learn to generalize to multiple initial conditions. In
addition, since their approach contains a learned generative
model, it tends to struggle when the dimensionality of the
task representation is large and the number of examples is
limited, which is often the case for robotics. We address

this problem by generating tasks through interaction with
the environment.

The approach most related to ours is the work of [12].
We exploit similar core principles and assumptions, i.e.,
we utilize Brownian motion for growing the current task
region and generate curriculum through reverse exploration
of new tasks. We extend this approach to multi-goal and
multi-start scenarios with infinitely many start-goal pairs,
and present results in environments with sparse rewards. In
addition, we address the question of controlling expansion
of the growing region. Our algorithm adaptively changes
the key exploration hyperparameter for environments with
significantly different optimal settings. These contributions
lead to improved resampling efficiency and eliminate the
need of expensive hyperparameter tuning.

III. BACKGROUND

We consider a reinforcement learning problem where an
agent is represented by a global policy that aims to reach
any goal in an environment. This section introduces a formal
definition of the problem and our framework.

Markov decision process. We consider a discrete-time,
finite-horizon Markov decision process (MDP) defined by a
tuple M = (S,G,A,P, r, ρ0, T ), in which S is the agent’s
state set, A is the action set, P : S ×A → Rn is the
transition probability distribution, r : S × G ×A → R is a
bounded reward function dependent on the goal state, where
G represents the goal set; ρ0 : S → Rn is the initial state
distribution, and T ∈ N is the time horizon. Our aim is
to learn a stochastic policy πθ : S × A × G → [0, 1]
parameterized by θ. In order to communicate the goal
to the agent, our formulation requires the policy to be
conditioned on the goal g ∈ G specified by the environ-
ment, i.e., πθ = π(at|st, g). The objective is to maximize
the expected return, ηρ0(πθ) = Es0∼ρ0,g∼ρgR(πθ, s0, g) with
the expected reward starting at s0 being R(πθ, s0, g) :=
Eτ |s0 [

∑T
t=0 r(st, at, g)], where τ = (s0, a0, . . .) denotes the

trajectory generated by executing actions at ∼ πθ(at|st, g)
sampled from the policy under environment dynamics
st+1 ∼ P(st+1|st, at).

Goal-dependent sparse reward function. We consider
the problem of reaching any goal state g ∼ U(G) in the
environment from any initial state ρ0 ∼ U(S0), where U
denotes a uniform distribution. For this purpose, we define
a sparse binary reward function dependent on the goal:

r(st, at, g) = 1{st ∈ Sg} , (1)

where Sg ⊂ S is a set of states corresponding to the goal g.
We note that although the binary reward function in Eq. (1)
is typically defined through some distance metric ε, our
learning algorithm does not explicitly utilize this metric.

Our method makes several assumptions that we state
below:

Assumption 1. The agent can be initialized at an arbitrary
state s0 ∈ S. This assumption is a common requirement for
many algorithms [12], [35] in the RL setting, especially those



that exploit uniform initialization to generalize to multiple
initial states.

Assumption 2. At least one initial state is provided to the
algorithm, which we call a seed state.

Assumption 3. For every state s ∈ S, there exists a
function g = fg(s) that maps any state in the environment
to the corresponding goal representation. This assumption
is required since, in our algorithm, states encountered by
the agent should be converted to the corresponding goal
representations.

Assumption 4. For any pair of states s1, s2 ∈ S there
exists a trajectory that moves the agent from s1 to s2. In
other words, the agent can reach any state from any other
state.

Although we explicitly introduced Assumption 4, it does
not prevent our algorithm from being applied to a wider set
of tasks where some states might not be mutually reachable.
For example, if isolated or irreversible pairs of states exist,
the algorithm nevertheless can be applied to all the reachable
states, which depend on the initial state provided.

IV. APPROACH

The main difficulty of training an RL agent in a sparse
reward setting arises from the fact that it is unlikely for the
agent to accomplish the task using random exploration if
the initial state is far from the goal state. In this work, we
take advantage of the intuition also exploited by [12] that the
agent has a higher chance of success if the goal is located in
close proximity to the initial state. In particular, initializing
the learning process by generating goal states that are close
to the initial states should enable the initial learning stages
to progress much faster. Since it can be highly nontrivial to
engineer a correct distance metric directly in the observation
space, we define the proximity of points by the number of
actions it takes to reach one point from another.

Taking this into consideration, we propose the idea of
gradually-growing reachability regions for generating a cur-
riculum in a multi-goal setting. Our algorithm consists of
two agents: a sampler and a learner. The sampler uses short
chains of random actions to arrive at a state that is then added
to the currently-explored set of states, which we refer to as
the reachability region. This region is defined as the area
where the learner is currently mastering transitions between
all pairs of points. As learning progresses, the sampler
removes already-learned states from the reachability region
and adds new points that have not yet been explored. This
generates a natural curriculum for learning a global reaching
policy, i.e., a policy capable of moving the agent between
any two states in the environment. Thus, the goal of the
sampler is to expand the reachability region and the goal
of the learner is to master transitions between states within
the reachability region. In the following, we first discuss the
sampler and then the learner.

A. Filtering states

In the first part of the sampling algorithm, we focus on
a criterion that indicates whether a particular set of states

has been mastered. In order to select the mastered states, we
retain statistics of rewards received by the agent on every
state within the current reachability region. We choose to
follow a simple approach, in which we only retain statistics
of the points in the role of starting states, as opposed to
retaining statistics on start-goal pairs. The algorithm uses
thresholds Rmin and Rmax to reject overly hard or overly
easy states, respectively. We refer to the set of all states in
the current reachability region as sr. Our algorithm keeps a
history of rewards in a vector r and associates them with
start states. If the average reward for a state in r does not
exceed the Rmin and Rmax thresholds, we use the state for
further resampling. This behavior is implemented in a helper
function FilterStates that takes sr, r, Rmin, and Rmax
as input and returns the retained set of states as sr.

B. Adaptive state resampling

As previously mentioned, we define the proximity of the
points through the action space, i.e., points are close to each
other if they are reachable via short random trajectories. We
use Brownian motion to sample new states to grow the region
of learned state-goal pairs.

A major challenge of this approach is the selection of the
variance for exploration. Poorly selected variance can result
in either a spread out set of points that are hard to learn from,
or a set of points that are too easily mastered—both of which
result in slow learning progress of the RL algorithm. We
adjust the sampling variance σ2 dynamically using a method
that is inspired by the integral part of a PID controller. Our
approach adjusts the variance such that the average reward in
the current iteration (ravg) is close to a user-provided target
reward (Rpref ). In particular, every time before resampling,
we update the sampling standard deviation (σ) according to
the following procedure:

δσ ← Clip(kσ · (ravg −Rpref ), − δσmax, δσmax)
σ ← Clip(σ + δσ, σmin, σmax) (2)

where Clip(x, α, β) , min(max(x, α), β), kσ is the con-
trol coefficient, δσmax is the maximum change of σ, and
σmin/max are the limits. Thus, if the success ratio systemat-
ically exceeds the preferred value, our method increases the
variance, promoting faster exploration and vice versa.

We encode Eq. (2) in the helper function UpdateStd
that takes σ and ravg as inputs and returns the new σ
value. Resampling a set of new states is implemented in the
helper function ResampleS (see Algorithm 1) that takes
the current set of states sr, the set of old mastered states
sold, and the variance σ2 as inputs and returns the new set
of states. Resampling is carried out in two stages. First, we
create an oversampled set of states by performing Brownian-
motion rollouts, which we refer to as sampling rollouts (lines
6 – 12). Random actions are generated by the sampler agent
using N (0 , σ2 · I) (where I is an identity matrix, 0 is
a zero vector) and collect the states visited by the agent.
Each of these rollouts is initialized at one of the states from
the growing oversampled set. This set is initialized with the
states retained in sr after filtering. At the second stage, we



sample Nnew states uniformly from the oversampled set and
add them to the states sampled uniformly from sold to form
the new current set of states (line 13, where N∼ U(s) denotes
“sampling N times from a uniform distribution”). Lines 3–
5 account for the scenario, where the algorithm rejects all
samples at the previous iteration.

C. Policy training
Algorithm 1: ResampleS

Input : sr, sold, σ2

Output: sr: states (growing region), r: rewards
1 nold ← 0
2 # When failed to learn in previous iteration
3 if len(s) = 0 then
4 sr ← sold.getLastN(Nold) , nold ← Nold
5 end
6 while len(sr) < Ns · (Nold +Nnew) do
7 s0 ∼ U(s), a0 ← 0
8 for t← 1 to T do
9 at ← at−1 + ε : ε ∼ N (0 , σ2 · I)

10 sr.append(st) : st ∼ P(st|st−1, at)
11 end
12 end
13 sr.append(Nnew∼ U(sr)), sr.append(Nold−nold∼ U(sold))
14 r ← [ ]

Algorithm 2: Policy Training
Input : sseed: seed state, N : iterations, K: sampling

period, π1: initial policy, σ: initial sampling
standard deviation, Nnew: number of new
states in sr, Nold: number of old states in sr,
Ns: state oversampling scale, T : rollout length

Output: πN+1: policy
1 sold, sr ← [sseed], [sseed]
2 sr, r ← ResampleS(sr, sold, σ2)
3 for i← 1 to N do
4 if i mod K = 0 then
5 # Every K’th iteration
6 σ ← UpdateStd(σ, ravg) # See Eq. (2)
7 # See Sec. IV-A
8 sr ← FilterStates(sr, r, Rmin, Rmax)
9 sold.append(sr)

10 # See Sec. IV-B
11 sr, r ← ResampleS(sr, sold, σ2)
12 end
13 strain, gtrain, r, ravg ← Rollouts(πi, sr, sold)
14 πi+1 ← UpdatePolicy(πi, strain, gtrain, r)
15 end

Algorithm 2 describes the policy training procedure in-
cluding both the sampler and the learner agents. The sampler
agent updates the reachability region (lines 5–12), while the
learner follows its own learning strategy (lines 13–14).

Our method starts by initializing the current set of states
sr, the corresponding vector of history of rewards r and the
pool of the previously learned states sold (line 1).

The sampler uses a fixed update period K (line 4) to adjust
the variance according to Eq. (2) (line 6) and proceeds to the

Fig. 1. Environments with seed states used in our experiments. Left: Maze
environment. The square represents the cube that the agent has to push to a
goal state. Black lines represent the walls of the maze. Right: SparseReacher
environment. The two-link manipulator has to touch the goal marker.

filtering stage to find good states from which to propagate
(line 8). Once the filtering is finished, the sampler resamples
a new set of states using Brownian motion (line 11).

The learner performs policy rollouts in every iteration
(line 13) using the helper function Rollouts. This function
follows a special start-goal pair sampling strategy. Start states
of the rollouts are sampled uniformly from the current state
set sr, whereas the goals are sampled from either sr (with
probability Pnew) or sold (with probability 1−Pnew). Once
the batch of samples used for the user-chosen RL algorithm
is accumulated, the policy is updated (line 14).

Our approach is agnostic to the choice of agent optimiza-
tion method—we only require that this method provides
an UpdatePolicy function. In our experiments, we use
TRPO [36] as one of the most robust RL algorithms with an
implementation available online.

V. EXPERIMENTS

We apply our approach to two representative environ-
ments. We show empirically that this technique successfully
trains agents in the multi-goal scenarios. Furthermore, we
demonstrate that our dynamic variance selection is less
sensitive to hyperparameters than other alternatives. In all of
our experiments, we use the following parameters across all
environments: Rmax = 0.9, Rmin = 0.3, K = 5, Ns = 5,
Nnew = 135, Nold = 65, Pnew = 0.6, Rpref = 0.7,
kσ = 2.0, δσmax = 0.5, σmin = 0.1, σmax = 1.0. Our
algorithm shows very mild sensitivity to the hyperparameters
mentioned above. The hyperparameter values were selected
either empirically or based on recommendations for similar
hyperparameters from [12].

A. Environments

The SparseReacher is an environment with a two-link ma-
nipulator based on Reacher-v0 from OpenAI Gym [37].
We use it in a sparse reward setting: the agent receives a
positive binary reward only when it touches the goal marker.
This corresponds to the situation where the robot’s end
effector is not further than 2 cm from the center of the goal
marker. In addition, the Cartesian velocities of the robot must
be lower than 0.2m/s. The episode ends when the positive
reward is acquired. As we observed in our experiments, such
sparse reward makes this environment significantly more
challenging, especially when the goal is to learn a policy
that can reach any point in the robot’s workspace.



Fig. 2. Illustration of state propagation for the maze multi-goal environment. Circles represent the current states in the reachability region. Images are
ordered from left to right in the order of learning progress. The middle two plots show the phenomenon of state clustering. Colors encode average reward
associated with the states, where red refers to high reward and blue to low reward.

The goal in the Maze environment is to bring a cube of
size hcube to a goal location. The agent receives a reward
only if the center of the cube lies still within an ε-radius of
the goal location. The episode ends as soon as the positive
reward is acquired. We define a variable time step in the
environment that is dependent on the time it takes for the
cube to settle after a force is applied. The table is constrained
by the size htable and surrounded by walls, such that the cube
cannot fall off the table. This environment has continuous
action space that consists of two components of the force
Fx, Fy applied to the center of the cube, parallel to the
table plane. Observations contain a 7-dimensional cube pose
where the rotation is encoded as quaternion. We define a
goal representation as a simple 2d position on the table.

This environment is challenging due to several aspects.
First, the search space increases with h2table, thus, the proba-
bility to encounter the target by chance is very small. Second,
the cube has complex dynamics compared to a simple point
mass: it can be pushed or rolled depending on the direction
and amount of force applied, and it exhibits a complex
behavior when it comes into a contact with the wall. Third,
the cube must stop at the precise location of the goal.

Both environments are shown in Fig. 1. For each environ-
ment, we select a single seed state to expand the growing
region. For the Maze environment, we explicitly pick the
most challenging scenario of the seed state located at the
end of the central corridor (seed 0) since the policy has to
learn how to precisely navigate inside of the narrow corridor
entrance. Both environments can be naturally used in both
single- and multi-goal settings. In every training scenario,
we add a very small negative reward for every time step to
promote shorter episodes, in addition to the sparse reward.

B. Reachability regions

Fig. 2 demonstrates the region expansion during learning
in the maze environment. In particular, it shows an interesting
phenomenon associated with variance adaptation that we re-
fer to as region clustering. During expansion, if the new set of
points was selected too aggressively, our algorithm responds
by decreasing the variance of the region expansion. Since
this event by definition happens due to a poor performance
(see Eq. (2)), there will be very few available states to sample
from. Thus, the algorithm forms a cluster of newly resampled
states located around a few states that passed through the
filtering stage (see Fig. 2(b)). Later, as the learner agent

improves, those clusters grow and connect, forming a single
region which is illustrated in Fig. 2(c). Such behavior helps
the learner to create new growing regions in isolated areas.

C. SparseReacher

Our results for the multi-goal version of the SparseReacher
environment are shown in Fig. 3. We execute the learning
process several times and provide the average reward for
each iteration over ten executions. We test our algorithm
with σ = 0.1 and σ = 0.5 and with our adaptive variance.
We also provide results for the case that does not use a
reachability region, but instead samples start and goal states
uniformly over the environments (i.e. without curriculum). In
addition, we provide comparison to the multi-goal version of
the selfplay approach [33].

The environment is conservative and requires small explo-
ration variances; we found that a constant σ = 0.1 performs
much better than σ > 0.5. Our adaptive variance selection
achieves a slightly higher average reward than the best
hand-tuned constant variance. The uniform state sampling
performs as well as our reachability approach when a bad
constant variance is applied. The selfplay approach has the
highest learning curve at the beginning, but it fails to explore
and converges to a suboptimal equilibrium of the the student
and the teacher. The tendency to being stuck in a suboptimal
minima is also mentioned in other sources [12], [33].

D. Maze

Our results for the multi-goal version of the Maze envi-
ronments are shown in Fig. 3. As before, we provide the
average reward for each iteration over ten executions.

This environment requires more exploration than the
SparseReacher environment; we found that when using a
constant value of σ = 1.0 the agent performs best, while
σ < 0.25 results in a very poor learning performance.
The performance of our algorithm in this environment also
depends on the seed state. For comparison we provided the
hardest (seed 0) and the easiest (seed 1) case comparison.
The reward of our adaptive variance selection is comparable
to the best hand-tuned constant variance.

Uniform state-goal sampling performed surprisingly well,
but our approach clearly indicates the benefits of generating
a curriculum for learning and outperforms uniform sampling
even in the scenario with the hardest seed.
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Fig. 3. Reward for different algorithm variants for the multi-goal case. The data is averaged over 10 executions. “Uniform” refers to uniform random
sampling of the start and goal states with no reachability region (no curriculum). “selfplay” refers to the asymmetric selfplay algorithm presented by [33].
“σ x” uses the reachability regions for the sampler agents, but assigns a constant σ = x for action selection. “σ adapt” is our full algorithm using the
reachability regions and adaptive σ.

The selfplay approach shows a very steep learning curve at
the beginning, but, similar to the reacher environment, it fails
to fully explore the state space and saturates approximately
at the level of the seed 0 scenario of our algorithm.

E. Hyperparameter adaptation

The environments that we selected are representative in
the spectrum of requirements for growing region expansion.
The multi-goal version of the SparseReacher environment is
more conservative and requires small exploration variances,
whereas the Maze environment benefits from aggressive
exploration, and hence high variances perform well. For
example, Fig. 3 (left) shows that, under constant variance,
the learner completely fails to improve when the variance is
set to a high value. On the other hand, Fig. 3 (right) shows the
opposite for the Maze, where the optimal variance value is
close to the maximum value. Our adaptive variance approach
performs similar to the optimal constant variance. Given that
we have the same set of exploration hyperparameters for
both environments, our approach eliminates the need to tune
the key hyperparameter of the region growing curriculum
learning method.

Fig. 4 shows the sampling variance evolution over training.
Initially, our algorithm picks the largest and the smallest
variance values for the Maze and the SparseReacher environ-
ments, respectively. In the case of SparseReacher, it keeps
a low variance at the beginning, since random initialization
of the policy weights results in actions of large magnitude.
As the agent keeps learning, the exploration is gradually
relaxed. Our algorithm regulates the variance in such a way
that allows the learner to maintain the proper exploration
pace, resulting in steep learning curves. We also find this idea
connected to the approach proposed by [38] in the context
of adversarial learning. In our scenario, since there is no loss
for the sampler, we apply the equilibrium principle through
balancing the success ratio for the learner.

We also evaluated single-goal variations, where the seed
state represents the only goal in each environment. In this
scenario, variance adaptation showed similar benefits. On
average the single-goal SparseReacher was learned 20–50%
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Fig. 4. σ adaptation for different environments in the multi-goal scenario.
The lines show the average and the shaded region the standard deviation
over 10 executions.

faster with variance adaptation than with manual tuning of a
constant variance. For the Maze environment our algorithm
is able to match the performance of the version with the
constant sampler variance.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel algorithm for learning
a global policy capable of moving an agent in environments
with any pair of start-goal transitions. Our algorithm is
based on the idea of region growing and it has several
attractive properties, such as: i) our approach is agnostic to
the choice of the agent optimization method, ii) it does not
require any strong priors about the system, iii) it is capable
of constructing effective curriculum in environments with
continuous states and actions. One of our key contributions
is employing automatic adjustment of the region expansion
that results in appropriate pace of learning without extensive
hyperparameter tuning.

Our investigation revealed a few interesting directions for
future work. First, the algorithm could substantially benefit
from parallel learning of a reversing policy, allowing it
to return to safe states within the current growing region.
Second, the current version of our algorithm is sensitive to
the choice of the seed state. We plan to address this problem
by utilizing a hierarchical approach and learn a set of local
policies for different state regions.
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