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Abstract— We introduce and evaluate contact-based tech-
niques to estimate tactile properties and detect manipulation
events using a biomimetic tactile sensor. In particular, we
estimate finger forces, and detect and classify slip events. In
addition, we present a grip force controller that uses the
estimation results to gently pick up objects of various weights
and texture. The estimation techniques and the grip controller
are experimentally evaluated on a robotic system consisting of
Barrett arms and hands. Our results indicate that we are able
to accurately estimate forces acting in all directions, detect the
incipient slip, and classify slip with over 80% success rate.

I. INTRODUCTION

A service robot deployed in human environments must
be able to perform dexterous manipulation tasks under many
different conditions. These tasks include interacting with un-
known objects (e.g. grasping). Recent advances in computer
vision and range sensing enable robots to detect objects
reliably [1]. However, even with correct pose and location
of an object, reliable grasping remains a problem.

Tactile sensors can be used to monitor gripper-object inter-
actions that are very important in grasping, especially when
it comes to fragile objects (see Fig. 1). These interactions
are otherwise difficult to observe and model.

Achieving human level performance in dexterous grasping
tasks will likely require richer tactile sensing than is currently
available [2]. Recently, biomimetic tactile sensors, designed
to provide more humanlike capabilities, have been developed.
These new sensors provide an opportunity to significantly
improve the robustness of robotic manipulation. In order
to fully use the available information, new estimation tech-
niques have to be developed. This paper presents a first
step towards estimating some tactile properties and detecting
manipulation events, such as slip, using biomimetic sensors.

In this work, we use the BioTac sensors [3] (Fig. 3) in
order to estimate forces, detect slip events and classify the
type of slip. Additionally, we present a grip controller that
uses the above techniques to improve grasp quality. The key
contributions of this work are: a) a force estimation technique
that outperforms the state of the art, b) two different slip
detection approaches that are able to detect the slip event up
to 35ms before it is detected by an accelerometer attached
to the object, c) a slip classifier that is able to classify the
types of the slip with over 80% accuracy, and d) potential
applications of the above techniques to robotic grasp control.
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Fig. 1: Robotic arm grasping a fragile object using a stan-
dard position controller (left) and the proposed force grip
controller (right).

II. RELATED WORK

Humans are capable of manipulating novel objects with
uncertain surface properties even when experiencing random
external perturbations [4]. Tactile sensing plays a crucial role
during these tasks [5]. As reported in [6], humans mainly
rely on tactile feedback for slip detection and contact force
estimation.

Previous work has taken inspiration from human grip
control. Romano et al. [7] propose and evaluate a robotic
grasp controller for a two-finger manipulator based on
human-inspired processing of data from tactile arrays. In
[8] an approach to control grip force using the BioTac is
presented. The approach adopts a conservative estimate of
the friction coefficient instead of estimating it on-the-fly.
However, a conservative estimate may result in damaging
fragile objects with excessive grip force. De Maria et al.
[9] propose a new slipping avoidance algorithm based on
integrated force/tactile sensors [10]. The algorithm includes
a tactile exploration phase aiming to estimate the friction
coefficient before grasping. It also uses a Kalman filter to
track the tangential component of the force estimated from
tactile sensing in order to adaptively change the grip force
applied by the manipulator. In our work, instead of a tactile
exploration phase, we continuously re-estimate the friction
coefficient while grasping the object.

Significant work has also focused on slip detection and
slip-based controllers. Heyneman and Cutkosky [11] present
a method for slip detection and try to distinguish between
finger/object and object/world slip events. Their approach



is based on multidimensional coherence which measures
whether a group of signals is sampling a single input or
a group of incoherent inputs. Schoepfer et al. [12] present a
frequency-domain approach for incipient slip detection based
on information from a Piezo-Resistive Tactile Sensor. Our
work, however, is novel in using the BioTac sensors for these
tasks, which provide the robot with increased sensitivity and
frequency range over traditional sensors.

The slip classification problem has not been explored as
much as the other aspects of tactile estimation. Melchiorri
[13] addresses the problem of detecting both linear and
rotational slip by using an integrated suite comprised of
a force/torque and tactile sensors. However, this approach
neglects the temporal aspect of tactile data, which may be
useful in classifying manipulation events.

The BioTac sensors have been previously used to esti-
mate contact forces. In [14] an analytical approach based
on electrode impedances was used to extract normal and
tangential forces. In this work, we show that our machine
learning methods outperform this method substantially.

In [15] the authors also use the BioTac sensors to esti-
mate forces acting on a finger. Machine learning (Artificial
Neural Networks and Gaussian Mixture Models) are used
for learning the mapping from sensor values to forces. The
best performance is achieved by using neural networks with
regularization techniques. Here we extend this approach to a
network with multiple layers and show that it leads to better
estimation performance.

III. BIOMIMETIC TACTILE SENSOR

We present a haptically-enabled robot with the Barrett
arm/hand system whose three fingers are equipped with
novel biomimetic tactile sensors (BioTacs). Each BioTac (see
Fig. 2) consists of a rigid core housing an array of 19
electrodes surrounded by an elastic skin. The skin is inflated
with an incompressible and conductive liquid.

The BioTac consists of three complementary sensory
modalities: force, pressure and temperature. When the skin
is in contact with an object, the liquid is displaced, resulting
in distributed impedance changes in the electrode array
on the surface of the rigid core. The impedance of each
electrode tends to be dominated by the thickness of the liquid
between the electrode and the immediately overlying skin.
Slip-related micro-vibrations in the skin propagate through
the fluid and are detected as AC signals by the hydro-acoustic
pressure sensor. Temperature and heat flow are transduced
by a thermistor near the surface of the rigid core. For each
BioTac, we introduce a coordinate system that is attached to
the fingernail. (Fig. 3).

IV. APPROACH

In this section, we introduce different aspects of tactile-
based estimation that are useful in various manipulation
scenarios. The high-resolution and multi-modal properties of
the BioTac sensor enables us to estimate forces, detect and
classify the slip, and control the gripper using reaction forces
exerted on the fingers.
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Fig. 2: Cross-sectional schematic of the BioTac sensor
(adapted from [14]).
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Fig. 3: The coordinate frame of the BioTac sensor (adapted
from [14]).

A. Force Estimation

Reliable estimation of tri-axial forces (Fx, Fy, Fz) applied
on the robot finger, which are shown in Fig. 3, is important
for a robust finger control. In this work, we employ and
evaluate four methods to estimate these forces based on the
readings from the BioTac sensor.

Previous studies have shown that tri-axial forces can be
characterized based on the impedance changes on the 19
electrodes [14]. This method makes an assumption that each
electrode is only sensitive to forces that are normal to its
surface. In our first approach, tri-axial contact forces are
analytically estimated by a weighted sum of the normal
vectors (Nx,i, Ny,i, Nz,i) of the electrodes. The weights are
the impedance changes (Ei) on the electrodes:Fx

Fy

Fz

 =

19∑
i=1

SxEiNx,i

SyEiNy,i

SzEiNz,i

 ,

where (Sx, Sy, Sz) are scaling factors that convert calculated
contact forces into Newtons (N). They are learned with linear
regression using ground truth data [14].

To improve the quality of force estimation we apply two
other machine learning methods: Locally Weighted Projec-
tion Regression (LWPR) [16] and regression with neural
networks. LWPR is a nonparametric regression technique
that uses locally linear models to perform nonlinear function
approximation. Given N local linear models ψk(x), the
estimation of the function value is performed by computing
a weighted mean of the values of all local models:

f(x) =

∑N
k=1 wk(x)ψk(x)∑N

k=1 wk(x)
.



The weights determine how much influence each local model
has on the function value based on its distance from the
estimation point. The weights are commonly modelled by a
Gaussian distribution:

wk(x) = exp

(
−1

2
(x− ck)D(x− ck)

)
,

where ck are the centers of the Gaussians and D is the
distance metric. Locally weighted partial least squares re-
gression is used to learn the weights and the parameters of
each local model.

As our third approach, we use a single-hidden-layer neural
network (NN) that was proposed by [15]. The hidden layer
consists of 38 neurons, which is the doubled number of
inputs .

We also propose a fourth approach, where we use a multi-
layer NN to learn the mapping from BioTac electrode values
to the finger forces. The network consists of input, output
and three hidden layers with 10 neurons each.

For both NN approaches we use neurons with the hyper-
bolic tangent sigmoid transfer function:

a =
2

1 + exp(−2n)
− 1.

For the activation of the output layer we use a linear transfer
function, i.e. the output is a linear combination of the inputs
from the previous layer.

NNs are trained with the error back-propagation and
Levenberg-Marquardt optimization technique [17]. In order
to avoid overfitting of the training data we employ the early
stopping technique during training [18]. The data set is
divided into mutually exclusive training, validation and test
sets. While the network parameters are optimized on the
training set, the training stops once the performance on the
validation set starts decreasing.

B. Slip Detection

Robust slip detection is one of the most important features
needed in a manipulation task. Knowledge about slip may
help the robot to react such that the object does not fall out
of its gripper. In order to detect a slip event, two different
estimation techniques are used: a force-derivative method and
a pressure-based method.

The force-derivative method uses changes in the estimated
normal force to detect slip. Since the gripper force becomes
smaller as the object slips, the negative derivative of the
normal force is used to detect the slip event. Based on the
experience from the experimentation, the threshold on the
negative normal force derivative is set to 1N/s.

Slip is also detected using the pressure sensor. Since the
BioTac skin contains a pattern of human-like fingerprints,
it is possible to detect slip-related micro-vibration on the
BioTac skin when rubbing against textured surface of an
object. A bandpass filter (60-700Hz) is first employed to
filter the pressure signal. Second, the absolute value of the
signal is calculated since we are interested in the absolute vi-
bration. Due to differences between pressure sensor sampling
frequency (2.2kHz) and the onboard controller (300Hz), the

slip detection algorithm considers a 10ms time window (3
cycles of the onboard controller). This guarantees 22 samples
of pressure readings in the time window. Slip is detected if 11
out of 22 pressure sensor values exceed the threshold. Based
on the experiments, the slip threshold is set to be twice as
large as the baseline vibration caused by the motors of the
robot.

C. Slip Classification

In the course of our experiments we observed two main
categories of object slip: linear and rotational. During linear
slip, the object maintains its orientation with respect to the
local end-effector frame but gradually slides out of the robot
fingers. During rotational slip, the center of mass of the
object tends to rotate about an axis normal to the grasp
surface, although the point of contact with the robot’s fingers
might stay the same. It is important to discriminate between
these two kinds of slip to react and control finger forces
accordingly. We notice that rotational slip requires much
stronger finger force response than linear slip in order to
robustly keep the object grasped within the robot hand [19].

To be able to classify linear and rotational slip, we train a
neural network to learn the mapping from the time-varying
BioTac electrode values to the slip class. To construct the fea-
tures, we take a certain time interval of electrode values and
combine all values inside the window into one long feature
vector, e.g. 100 consecutive timestamps of 19-dimensional
electrode values result in a 1900-dimensional input vector.
The architecture of the NN consists of input, output and one
hidden layer with 50 neurons. The hidden layer has a sigmoid
transfer function. The softmax activation function is used in
the output neurons. It produces the probabilities of the signal
sequence belonging to one of the slip classes.

Similar to the force estimation we use early stopping to
prevent overfitting. The network is trained with the Scaled
Conjugate Gradient back-propagation algorithm [20].

D. Grip Controller

In order to test the estimation of the forces and detection
of the slip event, we design a grip controller that is able
to take advantage of the estimated information. Appropriate
grip force control is required for the robot to manipulate
fragile objects without damaging or dropping them.

The control algorithm consists of two main stages, grip
initiation, and object lifting (Fig. 4). In grip initiation, the
robot fingers are position controlled to close on an object
until the estimated normal force (Fz) is above a certain
threshold. The threshold is chosen to be very small (0.2N ) in
order to avoid damaging the object. Once all the fingers are
in contact with the object, the position controller is stopped,
and the grip force controller is employed. The force control
is used for the entire object-lifting phase.

In order to establish the minimal required grip force, the
force tangential to the BioTac sensor Ft is estimated:

Ft =
√
F 2
x + F 2

y .
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Fig. 4: Control diagram of the grip controller.

Since the tangential force is directly proportional to the
weight of the object, the grip force Fz is controlled based on
the current estimation of the friction coefficient µ in addition
to some safety margin:

Fz =
Ft

µ
+ safety margin.

The friction coefficient is initially set to 2 based on the
known friction of the silicon skin of the BioTac and other
common materials. Since the initial friction coefficient is
not estimated accurately, slip may occur during the lifting
phase. Once slip is detected using the force-derivative-based
slip detection described earlier, the friction coefficient is
estimated more accurately online using the Coulomb friction
law:

µ =
Ft

Fz
.

The safety margin was chosen to be 10-40% to account for
object acceleration during manipulation and additional un-
certainties of the friction coefficient. Finally, the commanded
grip force Fz is updated according to the newly estimated
friction coefficient that provides the minimal force, which
is sufficient to lift the object. The grip control algorithm is
shown in Fig. 4.

V. EVALUATION AND DISCUSSION

A. Force Estimation

In order to evaluate different force estimation methods,
we collected a data set consisting of raw signals of 19
electrodes. The ground truth data were acquired using a force
plate that was rigidly attached to the table. The BioTac was
rigidly attached to the force plate as shown in Fig. 5. In
the experiment, the BioTac was perturbed manually multiple

Fig. 5: Experimental setup for the force estimation com-
parison: the finger is pressed at different positions and
orientations against the force plate.
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NN avoids overfitting and yields good results on the test set.

times from various directions with a wide range of forces.
The data were collected with frequency 300Hz (over 17000
individual force readings). The collected data sets were
divided into 30 seconds intervals of continuous electrode
readings. Afterwards, these intervals were randomly shuffled
and divided into 80% training and 20% test sets. Addition-
ally, during the training of NNs, 20% of the training set was
used for the validation set to prevent overfitting with the early
stopping technique.

Fig. 6 shows the results of the four compared methods
evaluated on the full and test sets. In both cases, common
estimation metrics were chosen: Mean Squared Error (MSE)
of the force in N2 and unitless Standardized Mean Squared
Error (SMSE). SMSE is computed by dividing the MSE by
the variance of the data.

The analytical approach developed previously [14] is out-
performed by the other three methods. From the results, we
draw the conclusion that the LWPR and 1-layer-NN methods
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Fig. 7: Example of force estimation with different methods
over time. From top to bottom: force estimation for dimen-
sions: Fx, Fy , Fz

overfitted to the data, i.e. they perform better in the full
dataset than the other methods but they yield inferior perfor-
mance in the set that was not exposed in the training. The
3-layer neural network approach, however, achieved good
results on the test set and avoided overfitting. It illustrates
that the deeper structure of the NN was able to capture the
high-dimensional force mapping more accurately. On the test
set, we could achieve the best MSE of 0.19N2 in the x-
direction, 0.28N2 in the y-direction and 0.72N2 in the z-
direction.

It is also worth noting that there exists a significant
difference between different force directions in the case of
the MSE evaluation. It can be explained by the range of
forces that were exerted on the sensor. Since Fz is the
vertical axis of the BioTac, the forces experienced during the
experiments vary more than in the other directions. SMSE
comparison is more appropriate in this case as it incorporates
the range of the data. The best SMSE values on the test set
were achieved with the 3-layer NN: 0.08 for the x-direction,
0.03 for the y-direction and 0.02 for the z-direction.

In addition to the absolute errors, it is important to see
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Fig. 8: An example run of the slip detection experiment.
Using the BioTac sensor we are able to detect the slip
event before the IMU accelerometer attached to the object
measures any acceleration due to slip.

how the estimation errors correspond to the actual forces
over time. An exemplary result is depicted in Fig. 7. One
problem of the analytical approach is that it has an offset
that differs in various situations. The assumption that each
electrode is mostly sensitive to skin compression along its
normal vector is not able to capture the non-linear patterns
given by the highly non-linear deformation on the silicon
skin of the BioTac. In the case of LWPR and NNs, the results
are similar. One can notice, however, that the LWPR force
estimation produces forces that are not as smooth as the NN
approaches. The difference between the two NN approaches
is too small to be noticed on this data set. Given the results
obtained from the test data set, the 3-layer NN approach
yields better performance than the other methods.

B. Slip Detection
We tested the previously described slip detection algo-

rithms on two objects with distinctive textures: a plastic jar
with smooth surface and a wooden block with rough texture
(see Fig. 9). In both cases, we attached an IMU to the objects
in order to detect the moment when the object starts moving.
In order to make the object slip, the robot first grasps and
picks up the object, and then opens its right finger by 0.04
rad. The collected data set consists of 20 slip events per
object.

An example run of the slip detection experiment using the
wooden block is depicted in Fig. 8. One can see that using
the force-derivative and the pressure-based method, we were
able to detect slip even before it was noticed by the IMU.
It is also worth noting that the pressure-based method can
detect slip sooner than the force-derivative method. This may
be caused by the higher sampling rate of the pressure sensor.
However, it is also the case that in the very initial stage of
slip (incipient slip) the microscopical slip effects are not yet
visible at the electrodes. Nonetheless, the slight movement of



Fig. 9: Different objects used for the experiments.

the fingerprints is picked up by the high-frequency pressure-
based slip detection signal.

Statistical analysis of the experiments shows that the
robot is able to detect slip using the force-derivative method
5.7ms ± 4.5ms (the plastic jar) and 7.8ms ± 3.6ms (the
wooden block) before the movement is noticed by the
IMU. The pressure-based method detects slip even sooner:
32.8ms ± 4.2ms (the plastic jar) and 35.7ms ± 6.0ms(the
wooden block) before the object motion is detected by the
IMU. These results indicate that the BioTac is able to quickly
and reliably detect slip which is important for robust grip
control.

C. Slip Classification
To evaluate the NN approach for the classification of two

kinds of slip events, four objects were chosen: a wooden
block, oil bottle, wipes box and a jar with added weights
(see Fig. 9). For training, the robot grasped an object either
approximately at the center of mass of the object or at the
edge of the object. These two grasping methods caused either
linear (if grasped at the center of mass) or rotational slip of
the object while it was being picked up. In order to detect
slip, an IMU was attached to the object. For each object,
over 80 grasps were performed (40 for the linear slip and 40
for the rotational slip). The data set was randomly shuffled
and divided into the 80% training and 20% test sets. Similar
to the force estimation, 20% of the training set was used for
the validation during the NN training.

Results of the experiments are depicted in Fig. 10. For the
input of the NN, points from 100 consecutive timestamps
were selected, resulting in a 1900-dimensional input vector.
Each point in Fig. 10 corresponds to the last timestamp that
was taken into account as the NN input, i.e. the point when
we classify slip given 100 previous values. The moment
when slip was detected by the IMU is depicted by a
vertical line. As more data are gathered during an actual
slip, classification accuracy improves as expected.However,
it is worth noting that using the NN approach, the robot
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is able to achieve approximately 80% classification rate,
before the IMU is even able to notice that the slip event
started. Our algorithm accurately detects the slip class even
before significant object motion is detected (using an IMU),
allowing more time for the robot to respond appropriately.

D. Grip Controller

The grip controller was evaluated using two different
objects with varying weight: a plastic jar (see Fig. 9) with
the weight ranging from 100g to 1500g and a plastic cup
(see Fig. 1, top) with the weight ranging from 10g to 500g. In
each experiment, the robot grasped the object approximately
at its center of mass, lifted it off the table, held in the air
and placed it back on the table.

Fig. 11 shows an example run of the grip controller.



During the reaching phase, the robot’s fingers detect the
contact with the jar using the normal force estimation. This
is the moment when the grip force control is employed (10
seconds in the experiment). When the robot starts to lift
the jar, the grip force (Fz) starts to increase proportionally
to the tangential force (Ft) sensed on the BioTac. The
friction coefficient (µ) is updated at approximately the 18th
second of the experiment, when the slip event is detected
by the force-derivative method. After the 20th second of the
experiment, the jar was successfully picked up and held in the
air. Two 150g weight plates were added to the jar at the 32nd
second and the 38th second, consecutively. It is worth noting
that the grip controller detected the two slip events using
the force-derivative method and increased the grip force to
prevent further slip. When the robot placed the jar back on
the table, there are large spikes in the slip detection signal (at
48th second). These may be used to detect the collision with
the environment and release the objects without pressing the
jar on the table with excessive force.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we explored how one can use biomimetic
tactile sensors to extract useful tactile information needed
for robust robotic grasping and manipulation.

We performed estimation of normal and tangential forces
that normally occur during holding and manipulating objects.
Machine learning techniques were employed and evaluated
to learn the non-linear mapping from raw sensor values to
forces. As the experiments demonstrated, the best perfor-
mance was achieved using 3-layer neural network regression.

Different modalities available from the BioTac sensor
were used to perform detection of the slip event. The best
performance was observed with the pressure-based method,
where slip was detected more than 30ms before it was picked
up by an IMU accelerometer.

Slip classification into linear or rotational slip was ob-
served to be important for robust object handling due to
different requirements for finger force response. We achieved
80% classification success rate using a neural network
approach before the slip event was detected by an IMU
accelerometer. This indicates that the robot should be able
to change finger forces at a very early stage of the slip and
therefore, prevent the moving of the object inside the hand.
In future work, the controller that uses this classification will
be employed and evaluated.

In order to test the above mentioned estimation techniques,
we created a grip force controller that adjusts the gripping
force according to the forces acting on the fingers. We
presented an example run of the controller during the entire
grasping experiment. Our results indicate that, by using the
grip controller, the robot is able to successfully grasp even
easily deformable objects such as a plastic cup (Fig. 1).

At present, we are able to detect simple manipulation
events and estimate forces. In the future, we plan to predict
more high-level features such as grasp stability, which can
be used to plan high-level decisions to manipulate objects
successfully.
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